We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Diagnostic Sensor Detects COVID-19 Directly from Swab Extracts

By LabMedica International staff writers
Posted on 30 Apr 2020
Print article
Image: A new test quickly detects SARS-CoV-2 (spheres) through binding to antibodies (Y-shapes) on a field-effect transistor (Photo courtesy of adapted from ACS Nano 2020, DOI: 10.1021/acsnano.0c02823).
Image: A new test quickly detects SARS-CoV-2 (spheres) through binding to antibodies (Y-shapes) on a field-effect transistor (Photo courtesy of adapted from ACS Nano 2020, DOI: 10.1021/acsnano.0c02823).
A team of South Korean researchers has developed a diagnostic tool for the rapid detection of coronavirus from swab samples with no preparation steps.

A novel coronavirus of zoonotic origin, SARS-CoV-2 (2019-nCoV) was first identified in patients with acute respiratory disease (COVID-19). This virus is genetically similar to SARS coronavirus and bat SARS-like coronaviruses. The outbreak was initially detected in Wuhan, a major city of China, but has subsequently exploded into a pandemic, which is raging in most of the countries of the world. At this time more than 2,500,000 cases of the disease have been confirmed worldwide with hundreds of thousands of fatalities. Signs of infection are highly non-specific and these include respiratory symptoms, fever, cough, dyspnea, and viral pneumonia. The elderly and those with chronic diseases seem to suffer a more severe disease than does the younger, healthier population.

One of the characteristics of COVID-19 is that the virus can be spread by individuals who are not symptomatic, having neither fever nor signs of infection. Lacking the ability to screen these asymptomatic patients quickly and effectively, health authorities have no way of predicting the optimum time to reduce the risk of disease transmission by implementing effective quarantine measures or when to ease quarantine restrictions. Thus, tracing unknown COVID-19 sources, fast and accurate screening of potential virus carriers, and diagnosis of asymptomatic patients are crucial steps for intervention and prevention at an early stage.

To meet this challenge, investigators at the Research Center for Bioconvergence Analysis at the Korea Basic Science Institute (Cheongju, Republic of Korea) developed a rapid diagnostic sensor that detects the virus directly in a tube of buffer containing the swab samples, without any preparation steps.

The field-effect transistor (FET)-based biosensing device was produced by coating graphene sheets with a specific antibody against SARS-CoV-2 spike protein. SARS-CoV-2 spike antibody was immobilized onto the fabricated device through 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), an efficient interface coupling agent used as a probe linker.

The performance of the sensor was determined using purified antigen protein, cultured virus particles, and nasopharyngeal swab specimens from COVID-19 patients. Results showed that the FET device could detect the SARS-CoV-2 spike protein at concentrations of one femtogram/millilter in phosphate-buffered saline and 100 femtogram/millilter in clinical transport medium. In addition, the FET sensor successfully detected intact SARS-CoV-2 virus in culture medium and clinical samples.

The clinical potential of the FET device was demonstrated by detecting SARS-CoV-2 antigen protein in transport medium used for nasopharyngeal swabs and cultured SARS-CoV-2 virus, as well as SARS-CoV-2 virus from clinical samples. Furthermore, the sensor could distinguish the SARS-CoV-2 antigen protein from those of the closely related virus MERS-CoV.

The FET device was described in the April 15, 2020, online edition of the journal ACS Nano.

Related Links:
Strathclyde University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.