We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Sensitive and Accurate Cancer Detection Through Analysis of Circulating Free DNA Methylation Patterns

By LabMedica International staff writers
Posted on 30 Jun 2020
Print article
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. The two white spheres represent methyl groups (Photo courtesy of Wikimedia Commons)
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. The two white spheres represent methyl groups (Photo courtesy of Wikimedia Commons)
An advanced liquid biopsy method for the detection and diagnosis of various types of cancer is based on the analysis of circulating tumor DNA methylation profiles.

Definitive tumor diagnosis relies on tissue specimens obtained by invasive surgery. Noninvasive diagnostic approaches could provide an opportunity to avoid surgery and mitigate unnecessary risk to patients.

In this regard, it has been found that tumor DNA circulates in the blood of cancer patients together with DNA from noncancerous cells. DNA methylation is an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, variation in DNA methylation between individuals occurs systemically. Like genetic variants, these systemic "interindividual" epigenetic variants are stable, can influence phenotype, and can be assessed in any easily obtained DNA sample. The set of nucleic acid methylation modifications in an organism's genome or in a particular cell is called the methylome.

A team of Canadian investigators, who are members of the University Health Network (Toronto, Canada), employed cell-free methylated DNA immuno-precipitation and high-throughput sequencing (cfMeDIP–seq), which is a highly sensitive assay capable of detecting early-stage tumors. In two papers published in the June 22, 2020, online edition of the journal Nature Medicine, the investigators described used of this method to diagnose brain and kidney cancers.

In the brain cancer study, the investigators tracked the cancer origin and type by comparing patient tumor biopsy samples with the analysis of cell-free DNA (ctDNA) in blood plasma samples from 221 patients. Using this approach, they were able to match the circulating plasma ctDNA to the tumor DNA, confirming the capability for identifying brain tumor DNA circulating in the blood. Then, using a machine learning approach, the investigators developed a computer program to classify the brain tumor type based solely on the circulating tumor DNA.

The same blood test was shown to accurately identify kidney cancer from circulating cell-free DNA obtained either from plasma or from urine.The method was tested on samples from 99 patients with early and advanced kidney cancer, 15 patients with stage IV urothelial bladder cancer, and 28 healthy, cancer-free control subjects. Following analysis of serum samples for ctDNA methylation patterns, the investigators reported accurate classification of patients across all stages of renal cell carcinoma (RCC) in plasma and demonstrated the validity of the assay to identify patients with RCC using urine cell-free DNA, although with somewhat less accuracy.

Senior author (on the brain cancer paper) Dr. Daniel De Carvalho, associate professor of medical biophysics at the University of Toronto (Canada), said, "The possibility to map epigenetic modifications genome-wide, combined with powerful computational approaches, has brought us to this tipping point. Molecular characterization of tumors by profiling epigenetic alterations in addition to genetic mutations gives us a more comprehensive understanding of the altered features of a tumor, and opens the possibilities for more specific, sensitive, and tumor agnostic tests."

Related Links:
University Health Network
University of Toronto


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.