We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Gut Microbiome Metabolomic Profiles Are Diagnostic for Liver Diseases

By LabMedica International staff writers
Posted on 08 Jul 2020
Print article
Image: Illustration depicts a healthy liver (left) and a liver with cirrhosis (Photo courtesy of [U.S.] National Institute of Diabetes and Digestive and Kidney Diseases)
Image: Illustration depicts a healthy liver (left) and a liver with cirrhosis (Photo courtesy of [U.S.] National Institute of Diabetes and Digestive and Kidney Diseases)
Liver disease researchers have developed a noninvasive method to diagnose nonalcoholic fatty liver disease (NAFLD) and predict progression to cirrhosis by analyzing metabolomic profiles produced by the microorganisms living in the gut (the microbiome).

NAFLD is the most common liver disorder worldwide and leading cause of chronic liver disease. The disease affects approximately 25% of the world's population. It is particularly common in developed nations, such as the United States, and affected about 75 to 100 million Americans in 2017. Over 90% of obese, 60% of diabetic, and up to 20% normal-weight people develop NAFLD. Genetic factors are known to play a major role in determining the likelihood of developing NAFLD. Since there are no methods for early detection of the disease, researchers have been searching for early biomarkers that could be used for this purpose.

Dysregulation of the gut microbiome has been linked in prior studies to the progression of NAFLD to advanced fibrosis and cirrhosis. To determine the diagnostic capacity of this association, investigators at the University of California San Diego (USA) compared stool microbiomes across 163 well-characterized participants encompassing non-NAFLD controls, NAFLD-cirrhosis patients, and their first-degree relatives.

The investigators employed the random forest machine learning algorithm and differential abundance analysis to identify discrete metagenomic and metabolomic signatures that were similarly effective in detecting cirrhosis. Combining the metagenomic signature with age and serum albumin levels accurately distinguished cirrhosis in etiologically and genetically distinct cohorts from geographically separated regions. Through the additional inclusion of serum aspartate aminotransferase levels, which are increased in cirrhosis patients, the investigators were able to discriminate cirrhosis from earlier stages of fibrosis.

"This is one of the first studies to show such a robust external validation of a gut microbiome-based signature across ethnicities and geographically distinct cohorts. The findings represent the possibility of creating an accurate, stool microbiome-based, non-invasive test to identify patients at greatest risk for cirrhosis," said senior author Dr. Rohit Loomba, professor of medicine at the University of California, San Diego. "Such a diagnostic tool is urgently needed."

The gut metabolomic profile study was published in the June 30, 2020 online edition of the journal Cell Metabolism.

Related Links:
University of California San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.