We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid One-Step Assay for Field-Based Detection of Asymptomatic Malaria

By LabMedica International staff writers
Posted on 29 Sep 2020
Print article
Image: A field-applicable, ultrasensitive diagnostic assay specifically detects DNA and RNA sequences from all Plasmodium species in symptomatic and asymptomatic malaria, and delivers its results fast in simple reporter devices (Photo courtesy of Peter Nguyen, Harvard University)
Image: A field-applicable, ultrasensitive diagnostic assay specifically detects DNA and RNA sequences from all Plasmodium species in symptomatic and asymptomatic malaria, and delivers its results fast in simple reporter devices (Photo courtesy of Peter Nguyen, Harvard University)
A novel CRISPR-based ultrasensitive assay system was able to detect the four major types of malaria-causing parasites and has been streamlined for use in locations lacking the advanced laboratory equipment and highly trained technicians required for tests such as RT-qPCR, which is used extensively for monitoring the COVID-19 pandemic.

Asymptomatic carriers of malaria caused by parasites of the Plasmodium species (P. falciparum, P. vivax, P. ovale, and P. malariae) hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (fewer than 100 parasites per microliter blood) that can be used in resource-limited settings (RLS). Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS.

Investigators at Harvard University (Cambridge, MA, USA) and their collaborators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and the Wyss Institute for Biologically Inspired Engineering (Cambridge, MA) reported the development of a CRISPR-based diagnostic tool for ultrasensitive detection and differentiation of the four Plasmodium parasites, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking).

The investigators modified the SHERLOCK protocol to incorporate the CRISPR-Cas12a enzyme, which they programmed to become activated by a guide RNA that bound to a specific target nucleic acid target sequence, in this case a sequence from one of the four Plasmodium species. Activated Cas12a then non-specifically cleaved any single-stranded DNA strand in its vicinity with an extremely high turn-over rate of about 1,250 collateral cleavage reactions per second.

The complete assay platform was expanded to comprise a 10-minute SHERLOCK parasite rapid extraction protocol, followed by the SHERLOCK diagnostic protocol for 60 minutes, which enabled Plasmodium species-specific detection via fluorescent or lateral flow strip readout. The assay was compatible with different sample types, such as whole blood, plasma, serum, and dried blood; and all components required for amplification, Cas12a activation, and signal generation were lyophilized in a single test tube that functioned as a "one-pot-reaction" following reconstitution of the reagents when mixed with a patient sample.

Performance of the simplified field-ready SHERLOCK diagnostic was evaluated using simulated whole blood, serum, and dried blood spot (DBS) samples, as well as clinical samples from patients with P. falciparum and P. vivax infections. Results revealed that the assay was capable of detecting fewer than two parasites per microliter blood, a limit of detection suggested by the World Health Organization (WHO). The P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (five P. falciparum and 10 P. vivax samples).

"This field-ready SHERLOCK diagnostic malaria assay surpasses the sensitivity and specificity requirements set by the WHO for a desired test that can be used to detect low parasite density in asymptomatic carriers of all major Plasmodium species," said senior author Dr. James Collins, professor of medical engineering and science at the Massachusetts Institute of Technology. "Its highly streamlined design could provide a viable solution to the present diagnostic bottleneck on the path to eliminate malaria, and more generally enabling malaria surveillance in low-resource settings."

The rapid SHERLOCK assay for malaria parasites was described in the September 21, 2020, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
Harvard University
Massachusetts Institute of Technology
Wyss Institute for Biologically Inspired Engineering


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.