Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutations Disrupting Neuritogenesis Genes Confer Risk for Cerebral Palsy

By LabMedica International staff writers
Posted on 14 Oct 2020
Cerebral palsy (CP) is a group of permanent movement disorders that appear in early childhood. Signs and symptoms vary among people and over time. Often, symptoms include poor coordination, stiff muscles, weak muscles, and tremors.

Cerebral palsy is caused by abnormal development or damage to the parts of the brain that control movement, balance, and posture. Most often, the problems occur during pregnancy; however, they may also occur during childbirth or shortly after birth.

A large international team of scientists working with those at Phoenix Children’s Hospital (Phoenix, AZ, USA) performed whole-exome sequencing on 250 cerebral palsy parent-offspring trios, in order to determine whether genomic factors may underlie cerebral palsy, along with the well-known environmental factors, such as prematurity, infection, hypoxia-ischemia, and pre- and perinatal stroke.

The team found eight genes that had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. They identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. They also found that nearly 12% of the cerebral palsy cases in their cohort could be attributed to an excess of damaging de novo mutations, and that there was greater enrichment of damaging mutations in idiopathic compared to environmental cerebral palsy cases.

In addition, the scientists reported that a total of 28.9% of cerebral palsy risk genes overlapped with genes linked to intellectual disability, 11.1% with genes involved in epilepsy, and 6.3% with genes implicated in autism spectrum disorder. There was also overlap with genes involved in other genetic neurodevelopmental disorders, indicating potential genetic pleiotropy and common etiologies of such co-occurring disorders.

Sara Lewis, MD, PhD, co-lead author of the study said, “We found many genes that associated with CP and noticed they have much in common; instead of being random, they fall in pathways that we know are important for how the brain develops and makes connections.”

The authors concluded that the cohort-wide enrichment of de novo mutations they detected was consistent with the observation that most cases of cerebral palsy occur sporadically adding that they estimate 75 genes to contribute to cerebral palsy through a de novo mechanism. Conservatively, they estimated that 14% of the cases in their cohort can be accounted for by damaging genomic variants, which indicates that genomic mutations represent an important, independent contributor to cerebral palsy etiology that historically has been overlooked. The study was published on September 28, 2020 in the journal Nature Genetics.

Related Links:
Phoenix Children’s Hospital


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Vaginitis Test
Allplex Vaginitis Screening Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.