We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-guided Immunoassay Measures Maternal Autoantibodies to Predict Likelihood of Autism Spectrum Disorder

By LabMedica International staff writers
Posted on 02 Feb 2021
Print article
Image: Structure of the CRMP1 protein (Photo courtesy of Wikimedia Commons)
Image: Structure of the CRMP1 protein (Photo courtesy of Wikimedia Commons)
An AI-guided immunoassay that measures maternal autoantibodies accurately predicts the likelihood that a child will develop autism spectrum disorder (ASD).

Investigators at the University of California, Davis (USA) had previously identified the presence of maternal autoantibodies to fetal brain proteins specific to ASD, now termed maternal autoantibody-related (MAR) ASD. In a recent paper they discussed the creation and validation of a serological assay to identify ASD-specific maternal autoantibody patterns of reactivity against eight previously identified proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX) that are highly expressed in developing brain.

The investigators analyzed plasma from 450 mothers of children diagnosed with ASD and from 342 mothers of typically developing children to develop an ELISA test for each of the protein antigens. They then used a machine learning algorithm to determine patterns of highly significant association with ASD and discovered several patterns that were ASD-specific.

Results revealed that the three main patterns associated with MAR ASD were CRMP1 + GDA, CRMP1 + CRMP2, and NSE + STIP1. Additionally, they found that maternal autoantibody reactivity to CRMP1 significantly increased the odds of a child having a higher Autism Diagnostic Observation Schedule (ADOS) severity score.

"The implications from this study are tremendous," said senior author Dr. Judy Van de Water, professor of rheumatology, allergy, and clinical immunology at the University of California, Davis. "It is the first time that machine learning has been used to identify with 100% accuracy MAR ASD-specific patterns as potential biomarkers of ASD risk. We can envision that a woman could have a blood test for these antibodies prior to getting pregnant. If she had them, she would know she would be at very high risk of having a child with autism. If not, she has a 43% lower chance of having a child with autism, as MAR autism is ruled out."

The paper was published in the January 22, 2021, online edition of the journal Molecular Psychiatry.

Related Links:
University of California, Davis

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Chlamydia Test Kit
CHLAMYTOP
New
Urine Drug Test
Instant-view Methadone Urine Drug Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.