We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Five Genes Help Predict Lewy Body Dementia

By LabMedica International staff writers
Posted on 10 Mar 2021
Print article
Image: Histopathology of Lewy bodies in the midbrain. A Lewy body in a melanized neuron from the substantia nigra. The Lewy body is the spherical body indicated by an arrow (Photo courtesy of Dr. Susan Daniel).
Image: Histopathology of Lewy bodies in the midbrain. A Lewy body in a melanized neuron from the substantia nigra. The Lewy body is the spherical body indicated by an arrow (Photo courtesy of Dr. Susan Daniel).
Lewy body dementia usually affects people over 65 years old. Early signs of the disease include hallucinations, mood swings, and problems with thinking, movements, and sleep. Patients who initially have cognitive and behavioral problems are usually diagnosed as having dementia with Lewy bodies, but are sometimes mistakenly diagnosed with Alzheimer’s disease.

Many patients that are initially diagnosed with Parkinson ’s disease may eventually have difficulties with thinking and mood caused by Lewy body dementia. In both cases, as the disease worsens, patients become severely disabled and may die within eight years of diagnosis. A growing body of evidence suggests genetics may play a role in the disorder and that some cases may be inherited.

A large international team of scientists led by those at the National Institute of Neurological Disorders and Stroke (Bethesda, MD, USA) compared the chromosomal DNA sequences of 2,981 Lewy body dementia patients with those of 4,931 healthy, age-matched control participants. Samples were collected from participants of European ancestry at 44 sites: 17 in Europe and 27 across North America.

The team found that the sequences of five genes from the Lewy body dementia patients were often different from those of the controls, suggesting that these genes may be important. It was the first time that two of the genes, called BIN1 and TMEM175, had been implicated in the disease. These genes may also have ties to Alzheimer’s and Parkinson’s diseases. The other three genes, SNCA, APOE, and GBA, had been implicated in previous studies, and thus, strengthened the importance of the genes in Lewy body dementia. They also saw differences in the same five genes when they compared the DNA sequences of another 970 Lewy body dementia patients with a new set of 8,928 control subjects, confirming their initial results.

Further analysis suggested that changes in the activity of these genes may lead to dementia and that the GBA gene may have a particularly strong influence on the disease. The gene encodes instructions for beta-glucosylceramidase, a protein that helps a cell’s recycling system break down sugary fats. The team found that both common and rare variants in the GBA gene are tied to Lewy body dementia. They also found that the genetic profiles of the patients in this study had higher chances of suffering from either Alzheimer’s or Parkinson’s disease than the age-matched control subjects.

Sonja W. Scholz, MD, PhD, a Neurologist and the senior author of the study, said, “Although Alzheimer’s and Parkinson’s disease are molecularly and clinically very different disorders, our results support the idea that the problems that cause those diseases may also happen in Lewy body dementia. The challenge we face in treating these patients is determining which specific problems are causing the dementia. We hope studies like this one will help doctors find precise treatments for each patient’s condition.” The study was published on February 15, 2021 in the journal Nature Genetics.


Related Links:
National Institute of Neurological Disorders and Stroke

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.