We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




An Ultrasensitive Assay for Measurement of Levels of Cathepsin B in the Blood

By LabMedica International staff writers
Posted on 21 Apr 2021
Print article
Image: Representation of the molecular structure of the cathepsin B (catB) protein (Photo courtesy of Wikimedia Commons)
Image: Representation of the molecular structure of the cathepsin B (catB) protein (Photo courtesy of Wikimedia Commons)
A novel digital enzyme-linked immunosorbent assay (ELISA) has been developed for the differential detection of cathepsin B from samples of serum or plasma.

Cathepsin B (catB) is a lysosomal cysteine protease expressed in various cells and organs, where it plays a role in protein degradation and turnover. Under pathological conditions, catB expression becomes upregulated in a variety of diseases including metastatic cancers, infections, traumatic brain injury, and neurological diseases. This upregulation is often associated with increased extracellular secretion via active or passive mechanisms. As such, the catB protein content is elevated above basal levels where it may have utility as a biofluid-based marker of diseases, injury, or trauma.

While biofluid samples such as plasma and serum contain catB, it is often difficult to obtain accurate measurements of the protein due to background interference and high variance, which limit the usefulness of catB as a peripheral biomarker. Thus, techniques for ultrasensitive protein detection that require low volumes of sample are necessary.

In this regard, investigators at Walter Reed Army Institute for Research (Silver Spring, MD, USA) developed a digital ELISA for differential detection of catB within less than five microliters of serum and plasma using the single molecule array (SiMoA) platform, which offers 1000-times more sensitivity and vastly reduced variance compared to colorimetric tests.

Results revealed that in buffer solution, the limit of detection (LoD) was between 1.56 and 8.47 picograms per milliliter depending on whether a two-step or three-step assay was used. After correcting for endogenous levels, the estimated LoD was approximately 4.7 picograms per milliliter in serum or plasma with the two-step assay. The lower limit of quantitation was about 2.3 picograms per milliliter in buffer and about 9.4 picograms per milliliter in serum or plasma, indicting the ability to measure small changes above endogenous levels within blood samples.

"Although cathepsin can be abundant in some tissues, accurate measurement in blood has been a challenge, especially if changes are expected to be small or sample is limited," said first author Dr. Bharani Thangavelu, a researcher in the brain trauma neuroprotection branch at the Walter Reed Army Institute for Research. "Our strategy uses an ultrasensitive technique to improve cathepsin B detection from small volumes of blood with little to no noise or impact from interfering substances."

The ultrasensitive ELISA for cathepsin B was described in the March 31, 2021, online edition of the journal ACS Omega.

Related Links:
Walter Reed Army Institute for Research

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.