We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Biomarker Helps Diagnose Pancreatic Cancer

By LabMedica International staff writers
Posted on 14 Jul 2021
Print article
Image: The Super Sensitive 1-STEP Polymer HRP IHC detection kit (Photo courtesy of BioGenix)
Image: The Super Sensitive 1-STEP Polymer HRP IHC detection kit (Photo courtesy of BioGenix)
Pancreatic ductal adenocarcinoma (PDAC), characterized by dense desmoplastic stroma laid down by pancreatic stellate cells (PSC), has no reliable diagnostic biomarkers for timely detection.

Most cancer biomarkers used in clinical practice are proteins released from the cancer cells themselves. One of the defining features of PDAC is that there are very few cancer cells. Pancreatic cancer is surprisingly made up of mostly non-cancer cells, which have been co-opted by cancer to build a huge amount of scar tissue or stroma around the cancer, providing a strong defense for the cancer cells.

Oncologists at the Queen Mary University of London (London, UK) and their colleagues analyzed blood samples from 267 donors including 140 samples from patients with PDAC Controls included patients with non-neoplastic pancreatico-biliary diseases as well as healthy individuals. Pentraxin 3 (PTX3) concentrations were quantified using the sandwich ELISA method. Western blotting was carried out and quantified using Fiji-ImageJ.

Other methods employed by the scientists were immunofluorescence, immunohistochemical analysis of human tissues (Super Sensitive IHC kit, BioGenix, Houston, TX, USA); mRNA in situ hybridization (ISH) was measured with RNAscope 2.5 HD duplex reagent assay (Advanced Cell Diagnostics, Newark, CA, USA); mini-organotypics; small interfering RNA studies; MTS assay for cell viability. Quantification of all cell counts and intensity of staining was performed in at least three representative images per mini-organotypic gel, and representative images per gel were acquired using a confocal laser scanning microscope LSM 880 (Carl Zeiss, White Plains, NY, USA).

The investigators reported that serum PTX3 above 4.34 ng/mL has a higher sensitivity (86%, 95% confidence interval (CI): 65–97%) and specificity (86%, 95% CI: 79–91%), positive predictive value (97%) and likelihood ratio (6.05), and is superior when compared to serum CA19-9 and CEA for detection of PDAC. The team found that when pancreatic cancer alone is targeted, PTX3 does not seem to change upon administration of chemotherapy; however, when medications targeting both cancer and stroma are administered, changes are seen in PTX3 levels. This change in PTX3 can be easily measured in blood to monitor how the drug is working. Thus, PTX3 may help in monitoring the effectiveness of treatment much earlier than scans may be able to indicate treatment response.

The authors concluded that their study suggests that PTX3 may be a sensitive and specific biomarker able to distinguish cancerous from non-cancerous conditions of the pancreas. The team hopes the findings will provide direction for future prospective clinical trials to determine whether PTX3 could be effective in the clinic as a biomarker for early detection and, perhaps, used in conjunction with other biomarkers to monitor response to treatment of pancreatic cancer. The study was published on June 29, 2021 in the journal npj Precision Oncology.


Related Links:
Queen Mary University of London
BioGenix
Advanced Cell Diagnostics
Carl Zeiss


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Flow Cytometer
BF – 710
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.