We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based Liquid Biopsy Identifies Prostate Cancer Patients Likely to Develop Resistance to Docetaxel Treatment

By LabMedica International staff writers
Posted on 16 Nov 2021
Print article
Image: The Parsortix blood filtration system (Photo courtesy of ANGLE PLC)
Image: The Parsortix blood filtration system (Photo courtesy of ANGLE PLC)
A blood-based liquid biopsy method identified prostate cancer patients likely to become resistant to the commonly used chemotherapeutic agent docetaxel.

Docetaxel is a cytotoxic chemotherapeutic agent. Because docetaxel is a cell-cycle-specific agent, it is cytotoxic to all dividing cells in the body. This includes tumor cells as well as hair follicles, bone marrow, and other germ cells. Docetaxel treatment has been shown to significantly improve overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC), and recently has been used as chemo-hormonal therapy in metastatic hormone-sensitive prostate cancer (mHSPC). However, a proportion of patients treated with DOC have inherent or acquired resistance.

Investigators at Queen Mary University of London (United Kingdom) examined the potential of a liquid biopsy approach for predicting which prostate cancer patients would become resistant to docetaxel.

For this study, the investigators employed the ANGLE (Guildford, United Kingdom) Parsortix blood filtration system to capture circulating tumor cells (CTCs) based on their larger size compared to other components in the blood, such as white blood cells.

Blood samples were obtained from 56 patients with advanced prostate cancer. The samples were taken before beginning docetaxel treatment, after the first dose of chemotherapy, before the fifth dose, and at the end of the treatment (after approximately six to eight months). The number of samples per patient ranged from two to four, and a total of 205 samples were analyzed.

Results revealed that patients were less likely to respond to docetaxel, their disease was more likely to recur or progress within three months, and they were more likely to die within 18 months if more than six CTCs per 7.5 milliliters of blood were detected before their first docetaxel dose. This compared to progression-free survival of 17 months and an overall survival time of three years for men with fewer than six CTCs detected per 7.5 milliliters of blood. In addition, it was found that the protein encoded by the KLK2 gene was significantly better at predicting time to disease progression and death than the current gold standard protein, prostate-specific antigen (PSA), which is encoded by the KLK3 gene.

“Our ability to collect and analyze CTCs before, during, and after treatment meant that we could monitor changes in CTCs in response to treatment,” said the author of the report, Caitlin Davies, a graduate research student at Queen Mary University of London. “We then looked for patterns in the data from men who responded or did not, or whose disease progressed sooner than others after treatment. Using these patterns, we can apply them to future patients with the goal to predict whether they will respond to therapy and preemptively decide on the best course of action that will have maximal benefit. For instance, an increase in CTC numbers may indicate a lack of response to treatment. Furthermore, by monitoring the appearance of potentially drug-resistant CTCs, we can change treatment tactics early on and in a patient-personalized and timely manner.”

Results of the study were presented in abstract delivered on November 10, 2021, at the British National Cancer Research Institute (NCRI) Festival.

Related Links:
Queen Mary University of London
ANGLE PLC


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
LH ELISA
Luteinizing Hormone ELISA
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.