We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BRUKER

BRUKER offers high-performance scientific instruments and high-value analytical and diagnostic solutions that enable ... read more Featured Products: More products

Download Mobile App




Same Day Test Identifies Secondary Infections in COVID-19 Patients

By LabMedica International staff writers
Posted on 02 Dec 2021
Print article
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)
The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial infection. When critically ill patients are cared for in the ICU, doctors may take deep samples from their lungs.

Currently samples are often sent to multiple laboratories where different bacterial and fungal cultures are set up alongside other complex molecular tests. Initial results take two to four days to return. SARS-CoV-2 has put considerable strain on ICUs, which has the potential to increase nosocomial infection, antimicrobial treatment and antimicrobial resistance (AMR).

A team of Infectious Diseases specialists led by those at Guy’s and St Thomas’ Hospital (London, UK) processed surplus clinical respiratory samples from 34 ICU COVID-19 patients with suspected secondary infections. Samples processed by the clinical laboratory included respiratory clinical samples (tracheal aspirates, bronchoalveolar lavages (BALs) and non-direct bronchoalveolar lavages (NDLs, a BAL collected without the use of a bronchoscope) for (i) routine microbiological culture for bacterial and fungal pathogens or detection of SARS-CoV-2 by PCR and (ii) sera and BALs for galactomannan (GM) antigen detection when Aspergillus infection was suspected.

Sabouraud agar plates were set up for the detection of Candida spp. and Aspergillus spp. and incubated for five days at 37 °C in aerobic conditions. Bacterial colonies were identified using MALDI-TOF (Bruker, Billerica, MA, USA) except the Aspergillus spp. where microscopy was performed. Clinical metagenomics (CMg) using nanopore sequencing (Oxford Nanopore Technologies, Oxford Science Park, UK) was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. Fragment size and quality of metagenomic libraries were analyzed using the TapeStation 4200 automated electrophoresis platform (Agilent Technologies, Santa Clara, CA, USA).

The investigators reported that an 8-hour CMg workflow was 92% sensitive and 82% specific for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of β-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from four positive and 39 negative samples. Molecular typing using 24-h sequencing data identified multi-drug resistant (MDR)- Klebsiella pneumoniae ST307 outbreak involving four patients and an MDR- Corynebacterium striatum outbreak involving 14 patients across three ICUs.

Jonathan D. Edgeworth, PhD, a Consultant Microbiologist and senior author of the study, said, “As soon as the pandemic started, our scientists realized there would be a benefit to sequencing genomes of all bacteria and fungi causing infection in COVID-19 patients while in the ICU. Within a few weeks we showed it can diagnose secondary infection, target antibiotic treatment and detect outbreaks much earlier than current technologies – all from a single sample.”

The authors concluded that CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg. The study was published on November 17, 2021 in the journal Genome Medicine.

Related Links:
Guys and St Thomas’ Hospital
Bruker
Oxford Nanopore Technologies
Agilent Technologies


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Laboratory Electric Thermostat
DNP-9025A
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.