We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genomic Screening Can Identify Risk for Amyloid Cardiomyopathy

By LabMedica International staff writers
Posted on 15 Dec 2021
Print article
Image: The NovaSeq 6000 offers deeper and broader coverage through advanced applications for a comprehensive view of the genome and unlocks the full spectrum of genetic variation and biological function with high-throughput sequencing (Photo courtesy of Illumina)
Image: The NovaSeq 6000 offers deeper and broader coverage through advanced applications for a comprehensive view of the genome and unlocks the full spectrum of genetic variation and biological function with high-throughput sequencing (Photo courtesy of Illumina)
Transthyretin amyloidosis (ATTR) a is a rare, progressive disease characterized by the abnormal buildup of amyloid deposits composed of misfolded transthyretin protein in the body’s organs and tissues. ATTR can be hereditary and lead to a spectrum of other diseases and conditions, including cardiomyopathy, a common precursor to heart failure.

Although many cases of ATTR are attributed to age-related misaggregation of genetically normal (“wild-type”) transthyretin, pathogenic or likely pathogenic (P/LP) variants in the transthyretin gene (TTR) are also known to cause protein misfolding, leading to hereditary disease (hATTR). Identifying individuals at risk through systematic screening for genomic variants in TTR, rather than symptom-based clinical ascertainment, could both clarify the true scope of the disease.

Medical Scientists at Geisinger Medical Center (Danville, PA, USA) and their colleagues identified 157 patients who carried a known disease-causing TTR variant among the 134,753 patients studied. Related heart-disease diagnoses, including cardiomyopathy and heart failure, were significantly more likely in those 60 and older, but only two of the 157 patients identified already had a clinical diagnosis of amyloidosis.

Genomic DNA was isolated from patients’ blood or saliva. Exome sequencing was performed in collaboration with Regeneron Genetics Center. VCRome probes, (Roche Nimblegen, Pleasanton, CA, USA) or a version of the xGEN probe (Integrated DNA Technologies, Coralville, IA, USA) were used for target sequence capture. Sequencing was performed by paired end 75bp reads on either an Illumina HiSeq2500 or NovaSeq (Illumina, San Diego, CA, USA).

The team identified 157 of 134,753 (0.12%) individuals with P/LP TTR variants (43% male, median age 52 [Q1-Q3: 37–61] years). Seven P/LP variants accounted for all observations, the majority being V122I (p.V142I; 113, 0.08%). Approximately 60% (n = 91) of individuals with P/LP TTR variants (all V122I) had African ancestry. Diagnoses of amyloidosis were limited (two of 157 patients), although related heart disease diagnoses, including cardiomyopathy and heart failure, were significantly increased in individuals with P/LP TTR variants who were aged >60 years. Fourteen percent (seven of 49) of individuals aged ≥60 or older with a P/LP TTR variant had heart disease and ventricular septal thickness >1.2 cm, only one of whom was diagnosed with amyloidosis.

Christopher Haggerty, PhD, an associate professor and senior author of the study, said, “Historically, hereditary amyloidosis has been underdiagnosed, which can be a burden on families for generations. A genetic-screening approach to identifying TTR gene variants has the potential to diagnose previously unrecognized cases of ATTR and identify patients at risk for developing cardiomyopathy and other diseases. If we can identify this risk earlier in a patient’s life, we’ll have opportunities to improve treatment.”

The authors concluded that individuals with P/LP TTR variants identified by genomic screening have increased odds of heart disease after age 60 years, although amyloidosis is likely underdiagnosed without knowledge of the genetic variant. The study was published on October 19, 2021 in the Journal of the American College of Cardiology.

Related Links:
Geisinger Medical Center
Roche Nimblegen
Integrated DNA Technologies 
Illumina


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.