We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

PROMEGA

Promega has a portfolio of more than 3,000 products covering the fields of genomics, protein analysis and expression,... read more Featured Products: More products

Download Mobile App




Long Mononucleotide Repeat Markers Validated for Microsatellite Instability Detection

By LabMedica International staff writers
Posted on 12 Jan 2022
Print article
Image: The Promega MSI Analysis System V1.2 and the LMR-MSI systems are PCR-based methods for detecting microsatellite instability (MSI) in solid tumors (Photo courtesy of Promega)
Image: The Promega MSI Analysis System V1.2 and the LMR-MSI systems are PCR-based methods for detecting microsatellite instability (MSI) in solid tumors (Photo courtesy of Promega)
Mismatch repair deficiency (dMMR) predicts response to immune checkpoint inhibitor therapy in solid tumors. Long mononucleotide repeat (LMR) markers may improve the interpretation of microsatellite instability (MSI) assays.

Normally, mismatch repair (MMR) proteins recognize and repair these errors immediately after DNA replication. However, in MMR deficient cells, these errors go unrecognized and remain unrepaired, resulting in novel microsatellite length alleles, or microsatellite instability. dMMR assays are used to screen cancer patients for Lynch syndrome and immune checkpoint inhibitor therapy.

Oncologists at the Johns Hopkins University School of Medicine (Baltimore, MD, USA) included in a study 48 colorectal cancer (CRC) samples, 66 endometrial cancer (EC) samples, 12 pancreatic cancer (PC) samples, and 22 samples of other cancer types, in addition to 12 MSI-low (MSI-L) samples of various cancer types. Macrodissection of tumor and normal tissues was guided by hematoxylin and eosin–stained sections. DNA was then extracted from formalin-fixed, paraffin-embedded tissue using the tissue preparation system (Siemens Healthineers, Erlangen, Germany). DNA concentrations were quantified using the Qubit fluorometer (Invitrogen, Carlsbad, CA, USA).

Immunohistochemistry (IHC) results for MLH1, MSH2, MSH6, and PMS2 proteins were obtained from surgical pathology reports and were used to define MMR status. Antibody clones included anti-MLH1 (clone M1), anti-MSH2 (clone G219-1129), anti-MSH6 (clone SP93), and anti-PMS2 (clone A16-4), all from Roche/Ventana Medical Systems (Tucson, AZ, USA). All IHC assays were performed on the Ventana Benchmark system. Multiplex PCR amplification of five mononucleotide repeat markers and two pentanucleotide repeat markers was performed using the MSI Analysis System V1.2 and the Long Mononucleotide Repeat (LMR) MSI Analysis System (Promega, Madison, WI, USA). Amplification products were analyzed using an ABI 3130×L or ABI 3500×L capillary electrophoresis instrument (Applied Biosystems, Foster City, CA, USA).

The investigators reported that the sensitivity and specificity of the LMR MSI panel for dMMR detection were both 100% in CRC. The sensitivity values of the MSI V1.2 and LMR MSI panels in EC were 88% and 98%, respectively, and the specificity values were both 100%. The sensitivity of the LMR panel was 75% in dMMR prostate cancer detected by immunohistochemistry. The 22 samples of other cancer types that were previously classified as MSI-high (MSI-H) were also classified as MSI-H using the LMR MSI panel. For the 12 samples that were previously classified as MSI-low (MSI-L), one sample was classified as microsatellite stable using the LMR MSI panel, eight as MSI-L, and three as MSI-H.

The authors concluded that the LMR MSI panel showed high concordance to the MSI V1.2 panel in CRC and greater sensitivity in EC. The LMR MSI panel improves dMMR detection in non-colorectal cancers. The study was published on December 02, 2021 in The Journal of Molecular Diagnosis.

Related Links:
Johns Hopkins University School of Medicine
Siemens Healthineers
Invitrogen
Roche/Ventana Medical Systems
Promega
Applied Biosystems


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Collection Container
Urine Monovette
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.