We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Test That Accurately Measures DNA Damage in Sperm Could Improve Male Infertility Diagnosis

By LabMedica International staff writers
Posted on 25 Jan 2022
Print article
Illustration
Illustration

A new test that can measure the amount of DNA damage in sperm with greater accuracy than current tests could significantly improve diagnosis of male infertility, which is more important than ever now that infertility rates are mounting.

A team of researchers at Tongji Medical College (Wuhan, China) developed a method that detects the number of DNA breaks in sperm, which in turn enables the calculation of the mean number of DNA breaks (MDB) per sperm in a sample. Current tests only show whether or not sperm have DNA damage and do not measure the amount of damage, even though the latter is essential for a complete evaluation of sperm health. However, this information plays a crucial role in guiding fertility treatments and in selecting high-quality sperm for sperm banks.

The researchers first evaluated their new method using sperm samples from 80 patients, 34 of whom had athenospermia (low sperm motility) and 46 of whom had normal semen. The team compared the ability of MDB to differentiate between athenospermia and normal samples with that of a conventional sperm DNA test that assesses the sperm DNA fragmentation index (DFI). From this, the researchers found that the area under the curve of MDB (0.7932) was higher than that of DFI (0.7631), meaning that MDB did a better job of telling the two sample types apart.

To further evaluate MDB’s clinical utility, the team then used it and DFI to assess 49 semen samples, 22 of which were associated with pregnancy and 27 of which were linked to an inability to get pregnant. The researchers found that the difference in MDB between the pregnant and non-pregnant groups was statistically significant (P=0.0106), while the difference in DFI between the two groups was not significant (P=0.0548). Furthermore, the area under the curve of MDB in this case (0.7576) was once again higher than the area under the curve of DFI (0.6616). Taken altogether, this means that MDB identifies viable sperm that lead to pregnancy with greater accuracy than conventional sperm DNA tests.

“These data indicated that the MDB parameter had stronger clinical relevance with the pregnancy outcomes and our established method could provide a better tool to evaluate sperm quality and male fertility,” said Xianjin Xiao, PhD, of Tongji Medical College, who led the team. “Our method involves direct detection of actual DNA fragmentation, which can measure the specific degree of sperm DNA fragmentation. The method has the advantages of short time-consumption, simple operation, high analytical sensitivity, and low requirement for instruments, which are conducive to the popularization of clinical application.”

Related Links:
Tongji Medical College 

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Incubator
HettCube 120
New
Flow Cytometer
BF – 710

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.