We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid, Cheaper Test Identifies Specific Genetic Mutations in Patient’s Cancer Cells for Personalized Therapy

By LabMedica International staff writers
Posted on 11 Feb 2022
Print article
Image: New assay can advance personalized cancer treatment (Photo courtesy of Unsplash)
Image: New assay can advance personalized cancer treatment (Photo courtesy of Unsplash)

A rapid, cheaper test can identify specific genetic mutations in a patient’s cancer cells for effective targeted therapy.

Using a routine blood sample, investigators from the Public Health Research Institute of the New Jersey Medical School of Rutgers University (Newark, NJ, USA) have developed an extremely sensitive assay to detect and quantify DNA fragments containing rare genetic mutations in a patient’s cancer cells. This assay uses “SuperSelective” PCR primers that virtually ignore abundant closely related non-mutant DNA fragments derived from patients’ normal cells. The new assay is faster and considerably cheaper than current methods and can be performed on widely available instruments.

Current techniques for analyzing liquid biopsies involve either next-generation sequence analysis, which is expensive, lengthy, and has limited sensitivity; or use a PCR technique in which both the mutant DNA fragments and the closely related wild-type DNA fragments are amplified, limiting sensitivity when the mutant DNA fragments are rare. The unique design of SuperSelective PCR primers, on the other hand, enables the amplification of the mutant DNA fragments, while effectively preventing the amplification of the abundant closely related wild-type DNA fragments. Consequently, the SuperSelective PCR assays are very sensitive. Multiplex SuperSelective PCR assays, utilizing frequent non-invasive liquid biopsies, enable the choice and subsequent modification of an effective targeted therapy for the treatment of an individual’s cancer. Furthermore, after treatment, these assays may help monitor the patient to detect the presence of minimal residual disease, enabling further intervention if necessary.

To demonstrate the clinical potential of their approach, six DNA samples from the plasma of patients with cancer were assayed. The samples from five of the patients were blinded. Multiplex SuperSelective PCR assays were performed to confirm the presence or absence of particular human epidermal growth factor receptor (EGFR) mutations in each sample. These mutations were chosen because their presence determines which targeted therapy is most likely to be effective against non-small-cell lung cancer. Four samples were positive for different EGFR target mutations and two samples did not give signals for EGFR target mutations.

After the blinded samples were unblinded, it was revealed that the two negative samples were from patients who did not have EGFR mutations, and those samples were purposely provided as a control. The assays identified the previously known mutations in the other samples. Significantly, the assay also identified a very rare resistance mutation in one blinded sample that was not previously known to be present, suggesting that the patient’s targeted therapy needed to be changed. The researchers note that this technology might have other medical applications, such as the identification of rare antibiotic-resistant bacteria and the identification of rare mutant genes found in fetal cells circulating in a mother’s plasma. Thus, the availability of sensitive multiplex SuperSelective PCR assays is likely to have wide clinical utility.

“The long-term goal of this research is to develop highly multiplex assays that enable both the early detection of mutations relevant to cancer before any symptoms have occurred and the application of an effective early treatment,” explained lead investigators Diana Yaneth Vargas, MS, and Fred Russell Kramer, PhD, from the Public Health Research Institute of the New Jersey Medical School of Rutgers University, Newark, NJ, USA. “These assays will use noninvasive liquid biopsies (routine blood samples) taken during a person’s annual medical checkup, and the DNA fragments transiently present in the blood sample (originating from cells that have died) will then be analyzed by highly multiplex real-time or digital PCR techniques.”

Related Links:
Rutgers University 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Vedolizumab ELISA
RIDASCREEN VDZ Monitoring
New
Anti-Rubella IgG (Rubella IgG) Test
Rubella IgG AccuBind ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The new assays will run on the QIAcuity digital PCR (dPCR) platform (Photo courtesy of QIAGEN)

New Digital PCR Assays Enable Accurate and Sensitive Detection of Critical Pathogens

QIAGEN (Venlo, the Netherlands) has introduced 100 new assays for its QIAcuity digital PCR (dPCR) platform, aimed at advancing research in areas such as cancer, inherited genetic disorders, and infectious... Read more

Pathology

view channel
Image: The new AI technology more precisely predicts the risk of getting breast cancer (Photo courtesy of William Brøns Petersen)

AI Technology Accurately Predicts Breast Cancer Risk Via ‘Zombie Cells’

Breast cancer remains one of the most common cancers worldwide, causing 670,000 deaths in 2022. A key aspect of assessing cancer risk involves identifying dying cells. A new study has demonstrated that... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.