We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Paper-Based Portable Diagnostic Platform Accurately Detects Mosquito-Borne Diseases Under Field Conditions

By LabMedica International staff writers
Posted on 09 Mar 2022
Print article
Image: A `lab-in-a-box`, the PLUM reader (Portable, Low-cost, User-friendly, Multimode), presents results from up to 384 patient samples and displays them in a single image capture (Photo courtesy of Livia Guo, LSK Technologies)
Image: A `lab-in-a-box`, the PLUM reader (Portable, Low-cost, User-friendly, Multimode), presents results from up to 384 patient samples and displays them in a single image capture (Photo courtesy of Livia Guo, LSK Technologies)

Field trails conducted in Latin America have shown that a paper-based portable diagnostic platform could accurately detect patients with mosquito-borne diseases with sensitivities equivalent to laboratory PCR tests.

In low-resource settings, resilience to infectious disease outbreaks can be hindered by limited access to diagnostic tests. In response to this limitation, investigators at the University of Toronto (Canada) and the biotech company LSK Technologies (Toronto, Canada) developed a portable diagnostic platform that was a combination of a cell-free, paper-based test and a field-ready companion device that allowed data to be collected using image-based color analysis. Called “PLUM” (Portable, Low-cost, User-friendly, Multimode), the conveniently-sized reader presented results from up to 384 samples and displayed them in a single image capture.

In the initial studies, the platform was optimized for detection of first Zika and then chikungunya viruses with reagents that could be freeze-dried, allowing for distribution without refrigeration

Using RNA extracted from the serum of patient samples collected in Brazil, the investigators found that the combined PLUM reader and paper-based Zika sensor provided analytical sensitivity and specificity for the Zika virus equivalent to RT–qPCR (quantitative real-time PCR) with a diagnostic accuracy of 98.5%. The investigators then demonstrated that by simply changing the molecular components that confer specificity to the assay, they could detect the chikungunya virus with 98.5% accuracy.

“We see emerging diagnostics, like the paper-based tests we have developed, as having tremendous near-term potential to augment existing PCR capacity, improve equity in access to health care, and aid in the responses to public health crises,” said senior author Dr. Keith Pardee, assistant professor of pharmaceutical sciences at the University of Toronto.

A sticking point delaying the field use of the PLUM system is that the extraction of RNA from patient samples requires liquid handling by skilled technicians. “With performance on patient samples now validated, we are tackling these next challenges, like sample preparation, so that the platform and PCR-like diagnostic capacity can be distributed more broadly into the communities where they are needed,” said Dr. Pardee.

The Zika virus field test was described in the March 7, 2022, online edition of the journal Nature Biomedical Engineering.

Related Links:
University of Toronto 
LSK Technologies 

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
Silver Member
Static Concentrator
BJP 10

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.