We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Supports Use of Methylated DNA Biomarkers for Cancer Diagnosis and Prognosis

By LabMedica International staff writers
Posted on 20 May 2022
Print article
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)

A recent study added weight to the theory that methylated DNA biomarkers could be used for cancer diagnosis and prognosis.

Methylation is a biological process by which methyl groups are added to a DNA molecule. This modification can change the activity of a DNA segment without changing the nucleotide sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and cancer development.

In a recent study, investigators at the H. Lee Moffitt Cancer Center & Research Institute (Tampa, FL, USA) introduced the concept of tumor-based expression quantitative trait methylation (eQTM), which could correlate with gene methylation patterns and gene expression to identify potential biomarkers. For this study, the investigators worked with melanoma as a disease model and assessed whether it was possible to identify a particular methylation signature that could interpret the nature of a tumor’s immune environment and could predict patient outcomes.

Results revealed that methylation sequences in melanoma samples could serve as a surrogate biomarker for the cytolytic activity score (CYT - an index of cancer immunity calculated from the mRNA expression levels of the granzyme A and perforin genes) and predict the type of immune environment in a tumor. In particular, they showed that methylation of the TCF7 (transcription factor 7) gene could predict whether T-cells in a tumor had anti-tumor properties. Furthermore, the TCF7 signature combined with the cytolytic activity score predicted patient outcomes. Melanoma patients with a low TCF7 signature and a high cytolytic activity score had longer survival times than did patients with other signature combinations.

Senior author Dr. Xuefeng Wang, associate member of the department of biostatistics and bioinformatics at the H. Lee Moffitt Cancer Center & Research Institute, said, “While additional studies need to be performed, these analyses suggest that determining immunoepignomic status through tumor-based expression quantitative trait methylation screening could allow for an accurate prediction of patient outcomes. The discovery unlocks potential new targets for personalized treatment decisions. It is similar to a fingerprint or iris scan, as featured in the cover art for the journal.”

The study was published as the cover article in the May 3, 2020, issue of the journal Cancer Research.

Related Links:
H. Lee Moffitt Cancer Center & Research Institute 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.