We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Next-Generation Sequencing Enables Diagnosis of Primary Immunodeficiency Disorders

By LabMedica International staff writers
Posted on 24 May 2022
Print article
Image: Sample prepared for next-generation DNA sequencing analysis (Photo courtesy of 123rf.com)
Image: Sample prepared for next-generation DNA sequencing analysis (Photo courtesy of 123rf.com)

The advent of next-generation sequencing (NGS) technology has enabled the diagnostic workup of patients suspected of having primary immunodeficiency disorders, which will have significant implications for not only their diagnosis and prognosis but also provide opportunities for targeted therapeutic management and family planning.

NGS parallelization of DNA sequencing reactions generates hundreds of megabases to gigabases of nucleotide sequence reads in a single instrument run. This has enabled a drastic increase in available sequence data and fundamentally changed genome sequencing approaches in the biomedical sciences.

Primary immunodeficiency disorders (PIDs) are a group of heterogeneous disorders caused by germline variants in a large number of genes that are involved in or control immune responses. More than 450 PIDs have been described, and this number is continuing to increase. Despite major advances in the molecular and genetic characterization of PIDs over the last 20 years, timely and accurate diagnosis of PID remains a challenge. This is particularly evident for the more common types of PID, such as common variable immunodeficiency (CVID), where there is a wide spectrum of clinical manifestations and late onset of symptoms.

CVID, which affects males and females equally, is the most common of the known PID syndromes, affecting approximately one in 25,000 individuals. It is an immune disorder characterized by recurrent infections and low antibody levels, specifically in immunoglobulin (Ig) types IgG, IgM, and IgA. Generally symptoms include high susceptibility to foreign invaders, chronic lung disease, and inflammation and infection of the gastrointestinal tract.

The intent of a recently published study was to highlight the importance of NGS in the diagnostic workup of patients suspected of having PID. To do this, investigators at the University of Western Australia (Perth, Australia) recruited 22 unrelated patients with CVID. The subjects all met the formal European Society for Immunodeficiencies–Pan-American Group for Immunodeficiency diagnostic criteria for CVID and had at least one of the following additional criteria: disease onset at age less than 18 years, autoimmunity, low memory B lymphocytes, family history, and/or history of lymphoproliferation.

DNA samples were tested and processed with a next-generation sequencing panel containing 120 different immune genes. Results of NGS analysis identified likely pathogenetic variants in six of the 22 patients (27%). In an additional four patients, variants of unknown significance (VOUS) were identified. VOUS are genetic variants whose clinical significance is not clear at this stage but might cause the disease. Overall, genetic abnormalities were found in nearly half of the subjects.

“Genetic testing was costly to perform and was mostly targeted to DNA sequencing of a single or very small number of genes. Therefore, a genetic diagnosis was limited for many patients with PIDs,” said senior author Dr. Lloyd J. D’Orsogna, senior lecturer in pathology and laboratory medicine at the University of Western Australia. “Recent advances in genetic technology allow affordable testing of multiple genes from the same individual. We can therefore identify a specific gene that may lead to frequent infections in patients. An earlier and more accurate diagnosis may improve the patient outcome and prevent complications. I hope the new age of genetic medicine enables earlier and more accurate diagnosis, likely leading to better treatment and outcomes for all.”

The study was published in the May 12, 2022, online edition of The Journal of Molecular Diagnostics.

Related Links:
University of Western Australia 

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.