We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Testing for DNA Shed from Colon Cancers into Bloodstream Guides Chemotherapy After Surgery

By LabMedica International staff writers
Posted on 06 Jun 2022
Print article
Image: DNA shed from colon cancers into bloodstream can guide chemotherapy (Photo courtesy of Unsplash)
Image: DNA shed from colon cancers into bloodstream can guide chemotherapy (Photo courtesy of Unsplash)

Currently, the use of chemotherapy in stage II colon cancer, which is defined as a colon cancer that has grown through the wall of the colon but does not extend to the lymph nodes or other organs, is controversial. There is no consensus among cancer experts on its benefit. Several prior research studies have demonstrated that circulating tumor DNA (ctDNA) - genetic material shed from tumors into the bloodstream - can be detected in blood and that the presence of ctDNA post-surgery predicts a risk of cancer recurrence. Now, a new research study has shown that ctDNA can identify colon cancer patients who can most benefit from chemotherapy following surgery and spare other patients the need for this form of treatment. This is believed to be the first clinical study showing that the measurement of circulating tumor DNA prior to therapy may benefit patients.

The multi-institutional, international study, led by researchers at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and WEHI (Melbourne, Australia), found that testing for ctDNA after surgery and directing chemotherapy to ctDNA-positive patients reduced the use of chemotherapy overall without compromising recurrence-free survival. The researchers were the first to show that colon cancer is caused by a sequence of genetic mutations and showed that DNA shed from tumors could be detected in blood, stool and other body fluids. The study was aimed at helping solve the controversy by assessing whether ctDNA could be used to provide a more precise prediction of recurrence risk after surgery. Patients who were ctDNA-negative could be spared the toxicities of chemotherapy, and those who had remaining cancer could receive chemotherapy to attack the lingering malignant cells.

In the study, 455 patients with stage II colon cancer were randomized after surgery 2:1 to standard treatment or ctDNA-guided management. Of these patients, 153 received standard management, which includes monitoring over time for recurrence or chemotherapy. An additional 302 patients underwent blood tests within seven weeks after surgery to search for ctDNA. If ctDNA was detected, patients received fluoropyrimidine or oxaliplatin-based chemotherapy. If ctDNA was not detected, patients did not receive chemotherapy. The ctDNA-guided approach reduced the use of chemotherapy compared with the standard management group (15.3% of patients in the ctDNA-guided group received chemotherapy versus 27.9% in the standard management group). The two- and three-year survival with no cancer recurrence was similar between the ctDNA-guided group and the standard management group.

The goal of chemotherapy in colon cancer is to eradicate micrometastases, cancer cells not yet visible on radiologic images that travel through the bloodstream and cause the cancer to come back or spread it to other parts of the body. Using ctDNA to detect these invisible cells can now identify which patients are most likely to have micrometastases and, therefore, are most likely to benefit from chemotherapy. The researchers hope these findings will stimulate the study of ctDNA in patients with other stages of colon cancer and other types of cancer.

In future studies, the researchers will explore patients with early-stage pancreatic cancer and stage III colon cancer to see if ctDNA can similarly identify patients who are most likely to benefit from more aggressive chemotherapy than is currently used. They also plan to explore whether the presence of residual ctDNA can be used to help optimize the management of individual patients following surgery or other forms of therapy. Using ctDNA to stratify treatments among patients is part of the movement toward precision medicine - individualized care that tailors therapies to the unique characteristics of a cancer. The researchers also believe the findings will provide opportunities to test promising new drugs in patients with earlier stages of cancer.

“Previous studies have theorized that ctDNA measurements might be useful in guiding patient management, and this study provides real-world clinical evidence that supports these theories,” said Bert Vogelstein, M.D., Clayton Professor of Oncology, co-director of the Ludwig Center at Johns Hopkins and a Howard Hughes Medical Institute investigator. “All drugs work better in patients with cancers that are detected relatively early, before they have given rise to large metastatic masses. However, new drugs are usually first tested in patients whose cancers are very advanced. We hope that ctDNA analysis will enable testing of new drugs in patients with early-stage cancers and micrometastases, when the new drugs are most likely to save lives.”

“Using ctDNA to guide treatment, a stage II colon cancer patient who is negative for ctDNA has a lower chance of cancer recurrence than the average stage I colon cancer patient, so we have an opportunity to change clinical practice,” added Joshua Cohen, a lead author of the study and M.D./Ph.D. candidate at the Johns Hopkins University School of Medicine.

Related Links:
Johns Hopkins Kimmel Cancer Center
WEHI 

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Cooling Table Centrifuge
MPW-352R
New
Thyroid Stimulating Hormone Assay
Neonatal TSH ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The PAXgene Urine Liquid Biopsy Set is the first standardized preanalytical workflow that stabilizes cell-free DNA in urine for subsequent analysis (Photo courtesy of PreAnalytiX)

Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine

Urine cell-free DNA (cfDNA) presents significant potential for research and future clinical applications. It facilitates the measurement and analysis of cfDNA fragments, detection of genetic alterations,... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.