We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Urine Test Distinguishes Between Viral and Bacterial Pneumonia

By LabMedica International staff writers
Posted on 15 Jun 2022
Print article
Image: Nanoparticle sensor can distinguish between viral and bacterial pneumonia (Photo courtesy of MIT)
Image: Nanoparticle sensor can distinguish between viral and bacterial pneumonia (Photo courtesy of MIT)

One reason why it has been difficult to distinguish between viral and bacterial pneumonia is that there are so many microbes that can cause pneumonia, including the bacteria Streptococcus pneumoniae and Haemophilus influenzae, and viruses such as influenza and respiratory syncytial virus (RSV). This uncertainty makes it harder for doctors to choose effective treatments because the antibiotics commonly used to treat bacterial pneumonia won’t help patients with viral pneumonia. In addition, limiting the use of antibiotics is an important step toward curbing antibiotic resistance. Now, researchers have designed a sensor that can distinguish between viral and bacterial pneumonia infections, which they hope will help doctors to choose the appropriate treatment.

In a study of mice, the researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) showed that their sensors could accurately distinguish bacterial and viral pneumonia within two hours, using a simple urine test to read the results. In designing their sensor, the research team decided to focus on measuring the host’s response to infection, rather than trying to detect the pathogen itself. Viral and bacterial infections provoke distinctive types of immune responses, which include the activation of enzymes called proteases, which break down proteins. The MIT team found that the pattern of activity of those enzymes can serve as a signature of bacterial or viral infection.

The human genome encodes more than 500 proteases, and many of these are used by cells that respond to infection, including T cells, neutrophils, and natural killer (NK) cells. The MIT team collected 33 publicly available datasets of genes that are expressed during respiratory infections. By analyzing those data, the researchers were able to identify 39 proteases that appear to respond differently to different types of infection. The team then used those data to create 20 different sensors that can interact with those proteases. The sensors consist of nanoparticles coated with peptides that can be cleaved by particular proteases. Each peptide is labeled with a reporter molecule that is freed when the peptides are cleaved by proteases that are upregulated in infection. Those reporters are eventually excreted in the urine. The urine can then be analyzed with mass spectrometry to determine which proteases are most active in the lungs.

The researchers tested their sensors in five different mouse models of pneumonia, caused by infections of Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae, influenza virus, and pneumonia virus of mice. After reading out the results from the urine tests, the researchers used machine learning to analyze the data. Using this approach, they were able to train algorithms that could differentiate between pneumonia versus healthy controls, and also distinguish whether an infection was viral or bacterial, based on those 20 sensors. The researchers also found that their sensors could distinguish between the five pathogens they tested, but with lower accuracy than the test to distinguish between viruses and bacteria.

One possibility the researchers may pursue is developing algorithms that can not only distinguish bacterial from viral infections, but also identify the class of microbes causing a bacterial infection, which could help doctors choose the best antibiotic to combat that type of bacteria. The urine-based readout is also amenable to future detection with a paper strip, similar to a pregnancy test, which would allow for point-of-care diagnosis. To this end, the researchers identified a subset of five sensors that could put at-home testing closer within reach. However, more work is needed to determine if the reduced panel would work similarly well in humans, who have more genetic and clinical variability than mice.

In their study, the researchers also identified some patterns of host response to different types of infection. In mice with bacterial infections, proteases secreted by neutrophils were more prominently seen, which was expected because neutrophils tend to respond more to bacterial infections than viral infections. Viral infections, on the other hand, provoked protease activity from T cells and NK cells, which usually respond more to viral infections. One of the sensors that generated the strongest signal was linked to a protease called granzyme B, which triggers programmed cell death. The researchers found that this sensor was highly activated in the lungs of mice with viral infections, and that both NK and T cells were involved in the response. To deliver the sensors in mice, the researchers injected them directly into the trachea, but they are now developing versions for human use that could be administered using either a nebulizer or an inhaler similar to an asthma inhaler. They are also working on a way to detect the results using a breathalyzer instead of a urine test, which could give results even more quickly.

“The challenge is that there are a lot of different pathogens that can lead to different kinds of pneumonia, and even with the most extensive and advanced testing, the specific pathogen causing someone’s disease can’t be identified in about half of patients. And if you treat a viral pneumonia with antibiotics, then you could be contributing to antibiotic resistance, which is a big problem, and the patient won’t get better,” said Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT.

Related Links:
MIT

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.