We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Biomarker Predicts Response to Therapy in Patients with a Rare Form of Metastatic Colorectal Cancer

By LabMedica International staff writers
Posted on 29 Sep 2022
Print article
Image: BRAF, a protein involved in sending signals inside cells which are involved in directing cell growth, is mutated in some human cancers (Photo courtesy of www.123rf.com)
Image: BRAF, a protein involved in sending signals inside cells which are involved in directing cell growth, is mutated in some human cancers (Photo courtesy of www.123rf.com)

Cancer researchers have identified a biomarker that predicts response of patients with microsatellite stable BRAF V600E metastatic colorectal cancer (MSS mCRC) to treatment with combined anti-BRAF/EGFR therapy.

Microsatellites are repeated sequences of DNA. These sequences can be made of units of one to six base pairs in length that are repeated and reside adjacent to each other in the genome. Although the length of microsatellites can vary from person to person and contributes to the individual DNA "fingerprint", each individual has microsatellites of a set length.

Mutations in BRAFV600E occur in around 10% of mCRC, and while relatively rare, they associate with a poor prognosis. Since a large fraction of mCRC patients do not respond to the recently approved combined anti-BRAF/EGFR therapy, there is an urgent need to identify the molecular determinants of treatment response.

In this regard, investigators at Vall d'Hebron Institute of Oncology (Barcelona, Spain) used whole-exome sequencing and targeted next generation sequencing (NGS) to analyze a discovery cohort of patients with mCRC(BRAF-V600E) treated with anti-BRAF/EGFR therapy. In addition, a control cohort of patients with mCRC(BRAF-V600E) receiving standard chemotherapies and anti-angiogenic agents (and not exposed to anti-BRAF) was evaluated. Data obtained from the molecular analyses were integrated with clinical correlates of response and survival.

Results revealed that inactivating mutations in RNF43, a negative regulator of the WNT signaling pathway, predicted improved response rates and survival outcomes in patients with microsatellite-stable (MSS) tumors. The response rate among patients with a BRAFV600E MSS mCRC carrying a RNF43 mutation reached 72.7%, and only 30.8% in those without the mutation. In patients with tumors harboring the RNF43 mutation, median disease-free progression was 10.1 months versus 4.1 months and overall survival in the former was 13.6 months compared to seven months in the latter.

The investigators concluded that patients with MSS-mCRC(BRAF-V600E) tumors harboring loss-of-function mutations in RNF43 responded favorably to combined anti-BRAF/EGFR therapy, whereas those with functional RNF43 derived limited benefit from this treatment.

"We performed extensive genomic analysis of over 20,000 genes. In total, we analyzed data from 166 patients which represents a significant number considering the rarity of this tumor subtype that accounts for around 10% of all colorectal cancers," said senior author Dr. Rodrigo A. Toledo, a translational investigator at Vall d'Hebron Institute of Oncology. "Our data point to RNF43 as a potential stratification biomarker that could help steer treatment decision making as well as define the optimal sequence of treatment in patients with microsatellite stable, BRAF V600E- mutant metastatic colorectal cancer. As importantly, it could also help to identify those patients for whom alternative treatment options are very much needed."

The study was published in the September 12, 2022, online edition of the journal Nature Medicine.

Related Links:
Vall d'Hebron Institute of Oncology 

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Chlamydia Test Kit
CHLAMYTOP
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.