We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Novel Gene Signature Predicts Likelihood of Neuroblastoma Relapse

By LabMedica International staff writers
Posted on 07 Oct 2022
Print article
Image: Neuroblastoma circulating tumor cells (CTCs) expressing characteristic genetic biomarkers were isolated using cell size-based separation (Photo courtesy of Frontiers in Oncology (2022). DOI: 10.3389/fonc.2022.939460)
Image: Neuroblastoma circulating tumor cells (CTCs) expressing characteristic genetic biomarkers were isolated using cell size-based separation (Photo courtesy of Frontiers in Oncology (2022). DOI: 10.3389/fonc.2022.939460)

Cancer researchers identified distinct circulating tumor cell and disseminated tumor cell gene expression signatures that distinguished neuroblastoma patients with bone marrow metastases at initial diagnosis, and that persisted in patients with subsequent relapse.

In a recent study, investigators used a cell size-based separation technique to enrich circulating tumor cells (CTCs) from blood samples and disseminated tumor cells (DTCs) from bone marrow aspirates (BMA) of neuroblastoma patients and subsequent genetic mapping in order to identify those patients most likely to relapse following treatment.

Neuroblastoma is the most common extracranial malignancy of childhood and responsible for a disproportionate number of deaths from childhood cancer. Nearly 60% of neuroblastomas relapse in distant sites, most commonly bone marrow. Disease relapse is thought to arise from undetected, chemotherapy-resistant cells.

Considering the relative size differential of neuroblastoma tumor cells over normal hematogenous cells, investigators at the National University of Singapore (Singapore) sought to identify biomarkers characteristic of such cancer cells by enriching and characterizing intact circulating cells in peripheral blood containing neuroblastoma CTCs, as well as their DTC counterparts in the bone marrow.

For this study, the investigators employed a spiral microfluidic chip to analyze peripheral blood from 17 neuroblastoma patients at three serial treatment timepoints (diagnosis, n=17; post-chemotherapy, n=11; and relapse, n=3), and bone marrow samples at diagnosis were enriched for large intact circulating cells.

Results revealed that expression of eight genes associated with PI3K and GCPR signaling were significantly upregulated in CTCs of patients with bone marrow metastases versus patients without. Correspondingly, in patients with marrow metastases, differentially-expressed gene signatures reflected upregulation of immune regulation in bone marrow DTCs versus paired CTCs samples. In patients who later developed disease relapse, five genes involved in immune cell regulation, JAK/STAT signaling, and the neuroblastoma mesenchymal super-enhancer state (OLFML2B, STAT1, ARHGDIB, STAB1, TLR2) were upregulated in serial CTC samples over their disease course, despite urinary catecholamines and bone marrow aspirates not indicating the disease recurrences.

"We hope that this method can replace current invasive methods such as sampling of bone marrow in the near future, and be potentially expanded to other childhood cancers," said senior author Dr.Chen Zhi Xiong, associate professor of physiology at the National University of Singapore. "We are also exploring the use of circulating cancer cells to better understand the biology of neuroblastoma and variations in treatment response to provide more personalized care for neuroblastoma patients. Besides cancer cells, we are also investigating other circulating biological entities in blood that may provide further options to monitor treatment effectiveness, and help predict cancer spread and relapse in childhood cancers."

The study was published in the September 13, 2022, online edition of the journal Frontiers in Oncology.

Related Links:
National University of Singapore

 

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chlamydia Test Kit
CHLAMYTOP
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.