We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Link Identified Between Mitochondria and Pancreatic Cancer Risk

By LabMedica International staff writers
Posted on 18 Oct 2022
Print article
Image: The T100 thermal cycler is a small thermal cycler offering a comprehensive set of convenient features in a small footprint (Photo courtesy of Bio-Rad)
Image: The T100 thermal cycler is a small thermal cycler offering a comprehensive set of convenient features in a small footprint (Photo courtesy of Bio-Rad)

Tumors invariably rewire their metabolism to promote cellular plasticity, adapt to ever-changing nutrient availability and acquire traits of aggressive disease, including metastatic competence. Cancer metabolism has long been equated with the preferential utilization of glycolysis by tumor cells even when oxygen is present.

Although mechanisms of mitochondrial reprogramming in cancer have recently come into better focus, the role of organelle fitness in this process has not been widely considered. In fact, the microenvironment of tumor growth is highly unfavorable to mitochondria, as erratic oxygen concentrations and oxidative radicals can compromise organelle integrity, deregulate multiple mitochondrial functions, and activate cell death.

A multidisciplinary international team of scientist led by The Wistar Institute (Philadelphia, PA, USA) examined primary patient samples with histologically confirmed diagnosis of normal brain parenchyma (tumor-free surgical margins, N = 5), low grade gliomas (LGG, N = 4, oligodendroglioma, astrocytoma) and glioblastoma (GBM, N = 6) for differential expression of the Mic60-low gene signature by qPCR. Four μm-thick sections from tissue blocks of human pancreatic ductal adenocarcinoma (PDAC) tissue samples were stained with a primary antibody to Mic60 (BD Biosciences, San Jose, CA, USA) using Benchmark Ultra Roche Ventana Immunostainer (Roche Group, Tucson, AZ, USA) and diaminobenzidine (DAB) as a chromogen. All slides were counterstained with hematoxylin.

Human PDAC cell lines PANC-1 and CAPAN-2 were transfected with control non-targeting siRNA or Mic60-directed siRNA. Transfected PANC-1 and CAPAN-2 cells were harvested and RNA was immediately extracted. Reverse-transcription reaction performed on a Bio-Rad T100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). Quantitative PCR was performed with SYBR Select Master Mix on ABI Quant Studio 5 machine (Thermo Fisher Scientific, Waltham MA, USA). As discovery dataset, log2-transformed mRNA expression values were downloaded from 33 tumor samples in The Cancer Genome Atlas (TCGA) database of the UCSC Xena browser.

The investigators showed that showed that an 11-gene Mic60-low signature is associated with aggressive disease, local inflammation, treatment failure, and shortened survival, ultimately demonstrating the clinical relevance of protein. expression of the Mic60-low gene signature in the TCGA dataset of PDAC was associated with shortened overall survival (HR = 1.87, N = 176), disease-specific survival (HR = 1.73), Therefore, the Mic60-low gene signature may be used as a simple tool or biomarker to estimate cancer risk for PDAC and potentially other types of cancer, including glioblastoma.

Dario C. Altieri, MD, a Professor of Immunology and a senior author of the study, said, “To the best of our knowledge, this is the first time that a gene signature of mitochondrial dysfunction is linked to aggressive cancer subtypes, treatment resistance and, unfortunately low patient survival rates. Although our work has focused on the mitochondrial protein Mic60 in this response, we know that dysfunctional mitochondria are commonly generated during tumor growth, suggesting that this is a general trait in cancer.”

The authors concluded that based on their findings, the Mic60-low gene signature may provide an easily accessible, point-of-service molecular tool to stratify patient risk in PDAC and potentially other malignancies, including GBM. The study was published on October 12 2022 in the journal PLOS ONE.

Related Links:
The Wistar Institute
BD Biosciences
Roche Group
Bio-Rad Laboratories
Thermo Fisher Scientific 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.