We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Urine Test Detects Parkinson’s by Identifying Protein from Brain Cells

By LabMedica International staff writers
Posted on 18 May 2023
Print article
Image: The EVtrap technology uses magnetic beads to rapidly isolate and identify large quantities of proteins from extracellular vesicles (Photo courtesy of Purdue University)
Image: The EVtrap technology uses magnetic beads to rapidly isolate and identify large quantities of proteins from extracellular vesicles (Photo courtesy of Purdue University)

It's estimated that 1% of individuals aged over 60 are affected by Parkinson's disease. Unfortunately, diagnosing this kind of neurodegenerative disease is challenging, with cognitive and movement tests sometimes taking over a year to confirm the diagnosis. Early diagnostic molecular tests could speed up interventions and help Parkinson's patients receive treatment faster. Now, researchers have devised a new technique that can reveal signs of Parkinson’s disease in urine samples.

Researchers at Purdue University (West Lafayette, IN, USA) developed a method that potentially enables the detection of alterations in LRRK2 (leucine-rich repeat kinase 2) proteins and their downstream pathways in urine samples of Parkinson's patients. LRRK2 proteins are known to be associated with Parkinson's disease. This innovative approach might also pave the way for noninvasive testing for other neurodegenerative disorders and cancers. Among several methods to study the effect of LRRK2, tracking its biological pathway is feasible through analysis of urine, blood, and cerebrospinal fluid.

Extracellular vesicles (EVs), minute packages utilized by cells for molecular delivery, are present in phosphorylated proteins that are common indicators of cancers. Previous studies suggested that blood samples with phosphoproteins could be potential markers for early cancer detection or disease progression monitoring. EVs offer a way to target disease markers, as they are released by specific types of cells. However, sampling such biomarkers from the brain via spinal tap is a highly intrusive process.

The potential of urine as a source of brain-related chemical markers was previously unknown. Although urine samples contain proteins that might serve as disease markers, many are involved in general cell maintenance and unrelated to diseases. Interestingly, these EVs can readily cross the blood-brain barrier. Upon being discharged from the brain into the bloodstream, they become concentrated or filtered into the urine. In this research, the team successfully isolated these EVs quickly from urine samples, using the EVtrap (Extracellular Vesicles total recovery and purification) method. The EVtrap method offers a simple way to monitor changes in urine, which is routinely collected in various clinical studies.

“It’s going to be a big new area in diagnostic development, especially for neurodegenerative diseases and cancer,” predicted co-author Anton Iliuk. “This kind of analysis opens a new frontier in noninvasive diagnostics development. It’s showing that biomarkers previously thought to be undetectable have become uncovered and do a really good job of differentiating disease from non-disease state.”

Related Links:
Purdue University 

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.