We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Germline Genetic Test to Make PSA Screening More Accurate

By LabMedica International staff writers
Posted on 12 Jun 2023
Print article
Image: Personalized PSA levels could improve prostate cancer screening (Photo courtesy of Freepik)
Image: Personalized PSA levels could improve prostate cancer screening (Photo courtesy of Freepik)

The prevalent screening test for prostate cancer - measuring prostate-specific antigen (PSA) levels - frequently produces false positives. While high PSA levels may indicate prostate cancer, other factors unrelated to cancer like inflammation, infection, an enlarged prostate, or simply aging can also cause elevated readings. As per one study, only about one-third of men with raised PSA levels were found to have prostate cancer upon biopsy. Moreover, 15% of men with normal PSA levels were later diagnosed with the disease. Scientists are now attempting to refine the PSA screening process by calibrating PSA levels to individual genetics, a move that could substantially reduce misdiagnosis and more accurately predict the aggressive disease. Such a customized screening process would require a germline genetic test in addition to the regular blood-based PSA test, using saliva, blood, or cheek swab samples to identify inherited genetic variants influencing PSA levels.

To delve deeper into the genetic factors influencing PSA level variations, scientists at Stanford Medicine (Stanford, CA, USA) collaborated with other experts to analyze the genomes and PSA levels of 95,768 men without prostate cancer. These data, mainly from men of European descent, were gathered from previous studies. The current issue with PSA screening is similar to an engineering signal-to-noise problem where the required output is mixed with background noise. The scientists' analysis suggested that genetics unrelated to cancer determined about 30% to 40% of the variations in PSA levels. By distinguishing normal variations, the scientists aim to make a more accurate assessment of when a PSA test could indicate prostate cancer.

The researchers identified 128 sites in the genome that influence inherent PSA levels. They formulated a method to measure PSA that considers an individual's normal genetic variations at these sites — this is referred to as a PSA polygenic score. This score was then tested on data from another group of nearly 32,000 men without prostate cancer, revealing that the score could predict nearly 10% of the variation in PSA levels. However, it was significantly more effective in men of European descent than in men of East Asian or African descent. Upon applying their score to a group comprising both men with and without prostate cancer (confirmed by biopsy), the researchers discovered that approximately 30% of men could have avoided a biopsy.

The adjusted PSA levels showed particular improvement in detecting aggressive prostate cancer, though this advantage was observed only in men of European ancestry. Conversely, the adjusted PSA levels would have failed to identify about 9% of positive biopsies. The majority of these missed cases were slow-growing tumors that might not require treatment, but these misclassifications suggest further scope for improving the score. The team is currently planning a more extensive study involving a more diverse group of men, as the polygenic score was developed primarily using data from men of European descent.

“A polygenic score is a quantitative way of summarizing someone’s genetic predisposition for a trait in a single value,” said Linda Kachuri, PhD, an assistant professor of epidemiology and population health and the lead author of the study. In this case, the trait is a higher baseline PSA level. “What we’re really worried about are those aggressive cases, so the fact that we’re able to show that genetically adjusted PSA is more predictive of aggressive disease is really promising.”

Related Links:
Stanford Medicine 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.