We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Germline Genetic Test to Make PSA Screening More Accurate

By LabMedica International staff writers
Posted on 12 Jun 2023
Print article
Image: Personalized PSA levels could improve prostate cancer screening (Photo courtesy of Freepik)
Image: Personalized PSA levels could improve prostate cancer screening (Photo courtesy of Freepik)

The prevalent screening test for prostate cancer - measuring prostate-specific antigen (PSA) levels - frequently produces false positives. While high PSA levels may indicate prostate cancer, other factors unrelated to cancer like inflammation, infection, an enlarged prostate, or simply aging can also cause elevated readings. As per one study, only about one-third of men with raised PSA levels were found to have prostate cancer upon biopsy. Moreover, 15% of men with normal PSA levels were later diagnosed with the disease. Scientists are now attempting to refine the PSA screening process by calibrating PSA levels to individual genetics, a move that could substantially reduce misdiagnosis and more accurately predict the aggressive disease. Such a customized screening process would require a germline genetic test in addition to the regular blood-based PSA test, using saliva, blood, or cheek swab samples to identify inherited genetic variants influencing PSA levels.

To delve deeper into the genetic factors influencing PSA level variations, scientists at Stanford Medicine (Stanford, CA, USA) collaborated with other experts to analyze the genomes and PSA levels of 95,768 men without prostate cancer. These data, mainly from men of European descent, were gathered from previous studies. The current issue with PSA screening is similar to an engineering signal-to-noise problem where the required output is mixed with background noise. The scientists' analysis suggested that genetics unrelated to cancer determined about 30% to 40% of the variations in PSA levels. By distinguishing normal variations, the scientists aim to make a more accurate assessment of when a PSA test could indicate prostate cancer.

The researchers identified 128 sites in the genome that influence inherent PSA levels. They formulated a method to measure PSA that considers an individual's normal genetic variations at these sites — this is referred to as a PSA polygenic score. This score was then tested on data from another group of nearly 32,000 men without prostate cancer, revealing that the score could predict nearly 10% of the variation in PSA levels. However, it was significantly more effective in men of European descent than in men of East Asian or African descent. Upon applying their score to a group comprising both men with and without prostate cancer (confirmed by biopsy), the researchers discovered that approximately 30% of men could have avoided a biopsy.

The adjusted PSA levels showed particular improvement in detecting aggressive prostate cancer, though this advantage was observed only in men of European ancestry. Conversely, the adjusted PSA levels would have failed to identify about 9% of positive biopsies. The majority of these missed cases were slow-growing tumors that might not require treatment, but these misclassifications suggest further scope for improving the score. The team is currently planning a more extensive study involving a more diverse group of men, as the polygenic score was developed primarily using data from men of European descent.

“A polygenic score is a quantitative way of summarizing someone’s genetic predisposition for a trait in a single value,” said Linda Kachuri, PhD, an assistant professor of epidemiology and population health and the lead author of the study. In this case, the trait is a higher baseline PSA level. “What we’re really worried about are those aggressive cases, so the fact that we’re able to show that genetically adjusted PSA is more predictive of aggressive disease is really promising.”

Related Links:
Stanford Medicine 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
DNA topoisomerase I ELISA
Anti-Scl-70 ELISA Test
New
Stand-Alone Disc Remover
NS96

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The PAXgene Urine Liquid Biopsy Set is the first standardized preanalytical workflow that stabilizes cell-free DNA in urine for subsequent analysis (Photo courtesy of PreAnalytiX)

Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine

Urine cell-free DNA (cfDNA) presents significant potential for research and future clinical applications. It facilitates the measurement and analysis of cfDNA fragments, detection of genetic alterations,... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.