We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Circulating Tumor DNA Test Measures Multiple Markers for Early Cancer Detection

By LabMedica International staff writers
Posted on 04 Aug 2023
Print article
Image: The new method can simultaneously measure different characteristics of circulating tumor DNA (Photo courtesy of Freepik)
Image: The new method can simultaneously measure different characteristics of circulating tumor DNA (Photo courtesy of Freepik)

The presence of circulating tumor DNA (ctDNA) in the bloodstream can serve as a valuable biomarker for early cancer detection due to its inherited genetic and epigenetic alterations from the original tumor DNA. By identifying distinct patterns in these alterations, specific to various tumor types and tissues of origin, it becomes possible to pinpoint an unidentified primary cancer and its location. However, current testing methods often fall short of accurately determining the origin of tumor DNA and/or involve comprehensive gene sequencing, making them too expensive for broader population screening. A novel technique has now been devised by scientists to simultaneously measure multiple cancer-specific hallmarks of ctDNA, facilitating early tumor detection and localization.

Researchers at Gene Solutions (Ho Chi Minh City, Vietnam) and the Medical Genetics Institute (Ho Chi Minh City, Vietnam) have formulated a unique approach known as SPOT-MAS (Screening for the Presence of Tumor by DNA Methylation and Size). This approach combines targeted high-depth gene sequencing with shallow whole-genome sequencing to uncover several characteristics of ctDNA. The method allows for the identification of methylation profiles, DNA copy number, ctDNA fragment size, and sequence motifs at the end of the fragments – all of which distinguish tumor DNA from healthy DNA. Using this approach, the researchers analyzed samples from 738 cancer patients (including breast, colorectal, liver, lung, and stomach cancer) and 1,550 healthy individuals, subsequently using an algorithm to determine ctDNA signatures for each cancer type. The researchers further assessed this approach using a different group of 239 patients, each diagnosed with one of the five cancer types.

The researchers discovered that the SPOT-MAS approach detected 73% of cancers with a 97% accuracy rate using just shallow-depth sequencing. Furthermore, the test pinpointed the tissue of origin with 70% accuracy. On comparing models focusing solely on one attribute, such as DNA copy number, it was found that models considering multiple attributes were markedly superior to those using single features. The test proved most effective for liver cancer detection, identifying approximately 90% of cases, but less so for breast cancer, detecting only about half the cases. This observation is consistent with prior research suggesting that liver tumors release more ctDNA than breast cancers. Further research is now required to compare this new method with existing ctDNA techniques to demonstrate its superior performance and cost-effectiveness over tests relying solely on single features. Further studies are also required to evaluate this test on larger cohorts of patients with earlier cancer stages than those included in the present study.

“Our work demonstrates that SPOT-MAS, with its unique combination of ctDNA feature and innovative machine learning algorithms, can successfully detect and localize multiple types of cancer through low-cost sequencing techniques,” said Le Son Tran, Principle Investigator and RD team leader at Gene Solutions and the Medical Genetics Institute. “A large, multi-center prospective study with several years’ follow-up is currently underway to fully validate the performance of SPOT-MAS as an early cancer screening test before it’s considered for use in a wider clinical setting.”

Related Links:
Gene Solutions
Medical Genetics Institute

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Leishmania Test
Leishmania Real Time PCR Kit
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.