We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




AI-Based Tool Uses Tumor Gene Sequencing Data to Identify Site of Origin for Enigmatic Cancers

By LabMedica International staff writers
Posted on 08 Aug 2023
Print article
Image: The AI model can help determine where a patient’s cancer arose (Photo courtesy of Freepik)
Image: The AI model can help determine where a patient’s cancer arose (Photo courtesy of Freepik)

For a small segment of cancer patients, the origin of their cancer remains undetermined, making it challenging to select the most effective treatment. This is because most cancer medications are designed for distinct types of cancer. Researchers have now developed a new methodology, utilizing machine learning, to pinpoint the origins of these elusive cancers. This computational model evaluates the sequences of roughly 400 genes to predict a tumor's site of origin. In a dataset comprising about 900 patients, the model was able to accurately categorize 40% of untraceable tumors, thus potentially increasing the number of patients eligible for genomically guided, targeted treatment by 2.2 times.

In 3 to 5% of cancer cases, especially when tumors have metastasized across the body, determining the initial site where the cancer originated is a challenge. These tumors are termed as cancers of unknown primary (CUP). The inability to determine their origin hampers the administration of "precision" drugs, which are tailored for specific cancer types. These precision medications are not only more effective but also have fewer side effects than the more general treatments often prescribed to CUP patients. To address this issue, researchers from the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and Dana-Farber Cancer Institute (Boston, MA, USA) analyzed routinely collected genetic data from Dana-Farber to predict cancer types. This data consisted of gene sequences for about 400 genes that are frequently mutated in cancer cases. Using this data, a machine-learning model was trained on nearly 30,000 patients diagnosed with one of 22 known cancer types.

When this model, termed OncoNPC, was tested on 7,000 tumors that it had never seen before but whose site of origin was known, it predicted their origins with an astounding 80% accuracy, which increased to 95% for tumors with high-confidence predictions which constituted about 65% of the total. This model was then applied to around 900 CUP tumors from Dana-Farber. For 40% of these tumors, the model delivered high-confidence origin predictions. Further, when the model's forecasts were corroborated against germline (inherited) mutations in some tumors with available data, the team found that the model’s predictions often matched the type of cancer most strongly predicted by the germline mutations than any other type of cancer.

The model's accuracy was further validated by comparing CUP patients' survival time against the typical prognosis for the type of cancer predicted by the model. For instance, CUP patients predicted to have a grimmer prognosis, like pancreatic cancer, indeed had comparatively shorter survival times, while those predicted to have a more favorable prognosis, such as neuroendocrine tumors, lived longer. Additionally, 10% of the studied CUP patients received a targeted treatment based on oncological speculation. Among these, those treated in line with the model's predictions had better outcomes. The researchers also examined if the model’s predictions could be useful based on the types of treatments that CUP patients analyzed in the study had received. Around 10% of these patients had received targeted treatment, based on their oncologists’ best guess about where their cancer had originated. Among these patients, those who received treatment consistent with the type of cancer predicted by the model for them fared better than patients who received a treatment generally administered for a different type of cancer than what the model predicted for them.

Furthermore, the researchers used the model to identify an additional 15% of patients (a 2.2-fold increase) who could have benefited from targeted treatments if their cancer's origin had been known. Sadly, they were treated with general chemotherapy drugs. The team is now keen on expanding their model to incorporate varied data types, like pathology and radiology images, to provide a more comprehensive prediction using multiple data modalities. This would also provide the model with a comprehensive perspective of tumors, allowing it to predict the tumor type as well as the most appropriate treatment.

“That was the most important finding in our paper, that this model could be potentially used to aid treatment decisions, guiding doctors toward personalized treatments for patients with cancers of unknown primary origin,” said Intae Moon, an MIT graduate student in electrical engineering and computer science who was the lead author of the new study.

Related Links:
MIT
Dana-Farber Cancer Institute 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Clostridium Difficile Assay
Revogene C. Difficile
New
Four-in-One Desktop Testing Solution
GULP-1sim/GULP-1ble

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The PAXgene Urine Liquid Biopsy Set is the first standardized preanalytical workflow that stabilizes cell-free DNA in urine for subsequent analysis (Photo courtesy of PreAnalytiX)

Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine

Urine cell-free DNA (cfDNA) presents significant potential for research and future clinical applications. It facilitates the measurement and analysis of cfDNA fragments, detection of genetic alterations,... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.