We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Pocket-Sized DNA Sequencers Track Malaria Drug Resistance in Near Real-Time

By LabMedica International staff writers
Posted on 05 Dec 2023
Print article
Image: The MinION portable, pocket-sized DNA sequencer utilizes nanopore sequencing technology to analyze genetic material (Photo courtesy of Oxford Nanopore)
Image: The MinION portable, pocket-sized DNA sequencer utilizes nanopore sequencing technology to analyze genetic material (Photo courtesy of Oxford Nanopore)

Despite ongoing control efforts, malaria continues to be a major global health challenge, claiming over 600,000 lives annually, predominantly among young children in sub-Saharan Africa. A major hurdle in combating malaria has been the parasite’s ability to quickly develop resistance to antimalarial drugs. Genomic surveillance – the continuous monitoring of changes in the parasite’s DNA – enables the analysis of genomic data related to parasite drug resistance. However, until now, this has been performed mostly in distant labs in high-income, non-endemic countries, away from the affected regions. Now, researchers have developed a new method for rapid and reliable detection of genetic mutations in malaria parasites, utilizing just a gaming laptop and a portable sequencer.

This groundbreaking approach developed by researchers from the Wellcome Sanger Institute (Cambridgeshire, UK) and University of Ghana (Accra, Ghana) allows for end-to-end, real-time pathogen monitoring directly in rural, malaria-prone areas with limited resources. The focus of their research was to identify crucial drug resistance markers in the malaria parasite and to examine the diversity within the vaccine target gene. This development is a significant step towards enabling local regions to monitor drug resistance and evaluate the effectiveness of new malaria vaccines.

For their study, the researchers collected parasites from clinical blood samples using standard molecular biology tools and a simple finger prick method. They then sequenced the malaria parasite DNA using the portable MinION sequencer from Oxford Nanopore (Oxford, UK) and a laptop. This allowed them to swiftly identify known drug resistance markers, emerging mutations, and targets of new malaria vaccines, with sequencing information available within just 48 hours after sample collection. The cost of this process was kept low, at approximately GBP 27 per sample for batches of 96.

The study's findings indicated that current frontline treatments are largely effective against the prevalent strains of malaria in Ghana. However, it also highlighted the importance of continuous monitoring, especially to safeguard high-risk groups receiving targeted treatments. The researchers identified several genetic variances between the circulating malaria strains and the protein targeted by new malaria vaccines. Importantly, no evidence of resistance to artemisinins, the best available treatment for P. falciparum malaria, was found. Although mutations related to resistance to sulfadoxine and pyrimethamine (SP) were detected, the more severe mutations leading to high-level resistance to SP were not present. These findings could have implications for the effectiveness of recent vaccine rollouts across Africa and underscore the need for further investigation.

“By taking sequencing to the source, insights arrive in days rather than years — enabling rapid, localized responses,” said Edem Adika, co-first author of the study at University of Ghana. “This unprecedented speed promises to be a powerful game-changer against infectious diseases outpacing our countermeasures. We hope this on-site approach is soon applied here to other pathogens.”

“The repeated evolution and spread of resistance to key antimalarial drugs has thwarted efforts to eliminate malaria over the last 70 years,” added Dr. William Hamilton, senior author of the study at the Wellcome Sanger Institute. “Expanding molecular surveillance in Africa is now critical for tracking emerging drug and diagnostic test resistance, and informing interventions like new vaccines.”

Related Links:
Wellcome Sanger Institute
University of Ghana
Oxford Nanopore 

Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Silver Member
1,5-anhydroglucitol (1,5-AG) Assay
1,5-anhydroglucitol (1,5-AG) Assay
New
Chagas Rapid Test
OnSite Chagas Ab Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue (Photo courtesy of Ozcan Research Group)

AI-Based Tissue Staining Detects Amyloid Deposits Without Chemical Stains or Polarization Microscopy

Systemic amyloidosis, a disorder characterized by the buildup of misfolded proteins in organs and tissues, presents significant diagnostic difficulties. The condition affects millions of people each year,... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.