We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Discovery of Rogue Protein Paves Way for Diagnostic Test to Detect Early-Onset Dementia

By LabMedica International staff writers
Posted on 08 Dec 2023
Print article
Image: Scientists have discovered a new amyloid-forming protein in neurodegenerative disease (Photo courtesy of 123RF)
Image: Scientists have discovered a new amyloid-forming protein in neurodegenerative disease (Photo courtesy of 123RF)

Neurodegenerative disorders are often marked by the buildup of amyloid filament inclusions of specific proteins in the brain. These proteins are critical in diagnosing and treating the associated diseases. Frontotemporal lobar degeneration (FTLD) is one such disorder, leading to frontotemporal dementia, which ranks just behind Alzheimer's disease in prevalence. In about 10% of FTLD cases, the identity of the filament-forming protein was previously unknown. The protein FUS was the suspected culprit, given its presence in brain inclusions and its known genetic role in some instances of amyotrophic lateral sclerosis, another neurodegenerative condition. Now, researchers using electron cryo-microscopy have unexpectedly found that the filaments are instead formed by the protein TAF15.

The research team from MRC Laboratory of Molecular Biology (Cambridge, UK) extracted amyloid filaments from the brains of four individuals affected by this type of FTLD. They carried out neuropathological examinations on the brain tissues obtained. Employing electron cryo-microscopy, they identified a consistent amyloid filament structure across all samples. The advanced resolution of this technique allowed for the direct sequencing of the protein responsible for forming these filaments. Contrary to expectations, the protein identified was not FUS, but TAF15, a member of the same protein family.

This discovery is pivotal in understanding the molecular pathology of this type of FTLD. It marks the rare identification of a new protein within the limited group known to form amyloid filaments associated with neurodegenerative diseases. This group already includes well-known proteins such as amyloid-beta, tau, TDP-43, and alpha-synuclein. The revelation of TAF15 as the filament-forming protein in these cases of FTLD paves the way for new diagnostic and therapeutic approaches targeting this specific neurodegenerative disease.

Related Links:
MRC LMB

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.