We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Liquid Biopsy Approach Improves Blood Tests’ Ability to Detect Circulating Tumor DNA

By LabMedica International staff writers
Posted on 22 Jan 2024
Print article
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)

Tumors continuously release DNA from dying cells into the bloodstream, which is rapidly broken down. This makes it difficult for existing blood tests to detect the minute amounts of tumor DNA present at any given time. Now, a team of researchers has developed an innovative method to amplify the detection of tumor DNA in blood, a breakthrough that could enhance cancer diagnosis and treatment monitoring.

Researchers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) have created "priming agents," injectable molecules that temporarily slow the clearance of circulating tumor DNA from the bloodstream. These priming agents target the body’s two main mechanisms for removing circulating DNA: DNases, enzymes that break down DNA in the blood, and macrophages, immune cells that absorb cell-free DNA during blood filtration through the liver. The researchers developed two types of priming agents. The first is a monoclonal antibody that attaches to circulating DNA, shielding it from DNases. The second type is a nanoparticle designed to prevent macrophages from absorbing cell-free DNA, utilizing the cells’ tendency to ingest synthetic nanoparticles. After injecting these agents, the DNA levels in the bloodstream rise for one to two hours before normalizing within about 24 hours.

In experiments with mice transplanted with lung-tumor-inducing cancer cells, the researchers demonstrated that these priming agents could increase the amount of recoverable circulating tumor DNA in a blood sample by up to 60-fold. Once collected, these blood samples can undergo the same sequencing tests used in liquid biopsy samples, identifying tumor DNA and specific sequences that indicate tumor types and potential treatments. The priming agents also show promise in early cancer detection. In mice with a low cancer burden, using the nanoparticle priming agent before drawing blood allowed the detection of circulating tumor DNA in 75% of the mice, a significant improvement compared to undetectable levels without the priming agents.

“A tumor is always creating new cell-free DNA, and that’s the signal that we’re attempting to detect in the blood draw. Existing liquid biopsy technologies, however, are limited by the amount of material you collect in the tube of blood,” said J. Christopher Love, the Raymond A. and Helen E. St. Laurent Professor of Chemical Engineering at MIT. “Where this work intercedes is thinking about how to inject something beforehand that would help boost or enhance the amount of signal that is available to collect in the same small sample.”

“One of the greatest hurdles for cancer liquid biopsy testing has been the scarcity of circulating tumor DNA in a blood sample,” added Viktor Adalsteinsson, director of the Gerstner Center for Cancer Diagnostics at the Broad Institute. “It’s thus been encouraging to see the magnitude of the effect we’ve been able to achieve so far and to envision what impact this could have for patients.”

Related Links:
MIT

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.