Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Sensitive Epigenetic-Based PCR Test Could Detect Difficult-To-Diagnose Breast Tumor

By LabMedica International staff writers
Posted on 05 Feb 2024

Phyllodes tumors, which make up less than 1% of breast tumors, present a diagnostic challenge due to their microscopic resemblance to other breast tumor types. More...

While the majority of phyllodes tumors are benign, about 10% are malignant. Getting an accurate diagnosis is key to ensuring the right treatment is given, as a misdiagnosis can lead to inappropriate or delayed care. Typically, tumor diagnosis is based on the pathological examination of cellular patterns. Now, scientists have found the epigenetic ‘signature’ of phyllodes tumors, paving the way for the development of a sensitive epigenetic-based PCR test to detect this hard-to-diagnose breast tumor that could be routinely used in pathology laboratories.

Scientists at the Garvan Institute of Medical Research (NSW, Australia) have identified new DNA markers based on epigenetics that could provide additional diagnostic information for phyllodes tumors. Epigenetic alterations involve changes in gene activity levels without modifying the DNA sequence itself and can be influenced by environmental factors. One common epigenetic process is DNA methylation, where methyl groups attach to DNA segments, altering gene expression. In their study of samples from 33 patients, the research team observed a distinct DNA methylation pattern in phyllodes tumors, distinguishing them from other cancers. They also developed an algorithm that successfully reclassified samples that had initially been misdiagnosed. This advancement in understanding may lead to more accurate diagnoses and better patient outcomes.

“Disruption to epigenetic processes, such as DNA methylation patterns, is a recognized hallmark of cancer and can vary significantly between cancer types, allowing a unique cancer forensic signature,” said Professor Susan Clark, co-senior author and Head of the Cancer Epigenetics Lab at Garvan. “Harnessing the power of cutting-edge epigenetic technologies, like Digital Droplet PCR, our next step will be devising a sensitive epigenetic-based PCR test to detect phyllodes tumors that could be routinely used in pathology laboratories.”

Related Links:
Garvan Institute of Medical Research


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Pipette
Accumax Smart Series
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.