We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Small Molecule POC Biosensor Technology to Revolutionize Early Disease Detection

By LabMedica International staff writers
Posted on 11 Mar 2024
Print article
Image: Conceptual representation of the research (Photo courtesy of POSTECH)
Image: Conceptual representation of the research (Photo courtesy of POSTECH)

Aptamers, biosensors made from nucleic acids that bind to specific proteins or small molecules, are increasingly employed in diagnosing various diseases. Their application in cancer detection is particularly promising due to the high cure rate possible with early cancer detection. However, aptamers face significant challenges, such as susceptibility to degradation or aggregation by nucleases and charged proteins found in biological samples like blood or saliva. This limitation has hampered their direct use in clinical samples without prior removal of these molecules. Now, a research team has addressed this issue by using a protein-based microcapsule.

Researchers from Pohang University of Science and Technology (POSTECH, Gyeongbuk, Korea) have devised an aptamer sensor system capable of rapid detection of target molecules directly from biological samples, thus eliminating the need for pretreatment processes. They have developed spherical microcapsules called proteinosomes, based on the self-assembly of protein-polymer amphiphiles. These microcapsules encase an aptasensor featuring a structure-switching aptamer that reacts with target molecules to emit a fluorescent signal instantly. The exterior of the microcapsule consists of a size-selective, semi-permeable membrane, designed to allow only small target molecules through while blocking larger, damaging proteins.

This innovative system maintains the aptasensor's optimal performance in untreated biofluids, thus enabling the efficient and quick detection of targets like estradiol, linked to reproductive organ cancers; dopamine, associated with Parkinson’s and Alzheimer’s diseases; and cocaine, which necessitates rapid detection. The capsules safeguard the aptasensors effectively against harmful proteins. For instance, aptasensors within these microcapsules remained unharmed for 18 hours in high concentration nuclease solutions, much more concentrated than typical serum levels. Moreover, by exploiting each capsule's capability to function as a distinct 'reaction vessel,' the team demonstrated the independent operation of multiple aptasensors in a single mixture. This allows for the simultaneous, real-time sensing of various target molecules and monitoring their concentration changes.

"By integrating sample separation and target detection, we have pioneered a novel small molecule point-of-care biosensor technology that is directly applicable to biological samples such as serum," said Professor Seung Soo Oh who led the research. "This platform has the potential to revolutionize medicine, spanning early disease detection and personalized treatment."

Related Links:
POSTECH

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.