We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cells Harvested From Urine to Enable Earlier Kidney Disease Detection

By LabMedica International staff writers
Posted on 20 Mar 2024
Print article
Image: Cells harvested from urine offers potential for non-invasive diagnostic testing of kidney disease (Photo courtesy of 123RF)
Image: Cells harvested from urine offers potential for non-invasive diagnostic testing of kidney disease (Photo courtesy of 123RF)

Detecting kidney disease late can lead to severe and even life-threatening issues. Now, new research has found that the genes expressed in human cells harvested from urine closely match those in the kidney, suggesting that these cells could offer a non-invasive approach to better understanding kidney health. This discovery could allow the diagnosis of kidney problems without doing biopsies, making it possible to detect kidney disease earlier and more easily.

A team of scientists led by the University of Manchester (Manchester, UK) used a method called transcriptomics to measure the levels of about 20,000 genes in each cellular sediment sample of urine. Transcriptomics helps scientists see which genes are active or inactive, providing insights into how cells adapt to changes in their environment. This molecular-level understanding can lead to more accurate diagnoses and better patient outcomes. The team also had access to the world's largest collection of human kidney samples from surgeries or biopsies, known as the Human Kidney Tissue Resource, at the University of Manchester.

The researchers used advanced computational methods to extract both DNA and RNA from the samples and analyze data from previous large-scale studies on blood pressure. They discovered that a low level of a particular gene in the kidney could be a cause of high blood pressure. This gene, ENPEP, produces an enzyme called aminopeptidase and is crucial for blood pressure regulation. It was among the 399 genes identified in the study whose levels in the kidney have a direct impact on blood pressure readings.

“This study shows that using cutting edge technology we are able to combine different unique datasets together using genetics as a connector,” said Professor Maciej Tomaszewski, Chair of Cardiovascular Medicine at The University of Manchester, who led the study. “One of the most exciting findings of that is we discover how cells harvested from urine have the potential to provide a glimpse into the molecular operation of the human kidney. That gives us an exciting avenue of research for non-invasive diagnostic testing.”

“There is a well-known link between the heart and the kidneys in regulating blood pressure,” said Professor Bryan Williams, Chief Scientific and Medical Officer at the British Heart Foundation which funded the study. “This study uses cutting-edge scientific techniques to analyze genes present in kidney cells that are normally expelled in the urine. Analyzing these cells could reveal which genes may be playing a key role in people with high blood pressure, and could potentially offer clinicians a new, non-invasive way to help diagnose those with kidney disease early on.”

Related Links:
University of Manchester

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Thermal Cycler
Axygen MaxyGene II

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.