We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single Genetic Test to Accelerate Diagnoses for Rare Developmental Disorders

By LabMedica International staff writers
Posted on 01 Apr 2024
Print article
Image: The single genomic test promises accelerated diagnoses for rare genetic diseases (Photo courtesy of Wellcome Sanger Institute)
Image: The single genomic test promises accelerated diagnoses for rare genetic diseases (Photo courtesy of Wellcome Sanger Institute)

Alterations in human DNA range from minor single nucleotide variations to substantial alterations involving the deletion or duplication of extensive DNA segments, known as copy number variations (CNVs). While CNVs contribute significantly to human genetic diversity and are often harmless, they can also lead to various neurodevelopmental disorders like Angelman syndrome, DiGeorge syndrome, and Williams-Beuren syndrome. Children suspected of having genetic conditions due to these significant DNA deletions or duplications typically undergo a lengthy diagnostic process that begins with microarray testing and may advance to more comprehensive genome-wide sequencing tests, such as exome or genome sequencing. Detecting CNVs in sequencing data and interpreting them can be challenging for clinical teams, which is why microarrays are commonly employed. Scientists have now created a single approach to identify these structural alterations using data from genome-wide exome sequencing assays.

The findings of the study by researchers from the Wellcome Sanger Institute (Cambridgeshire, UK) along with their collaborators suggest that a genetic test could be capable of replacing the existing dual-step diagnostic approach for identifying rare developmental disorders in children. This advancement could facilitate earlier diagnoses for affected families and save critical healthcare resources. The team reevaluated genetic information from approximately 10,000 families involved in the Deciphering Developmental Disorders study. They devised a single-assay technique that integrates four algorithms using machine learning to examine exome sequencing data.

The team demonstrated for the first time that exome sequencing, which only reads only protein-coding DNA, is equally or more accurate than standard clinical microarrays at identifying disease-causing structural genetic variations. Upon comparing this innovative single-assay method against the usual clinical methods, the researchers found it could accurately identify 305 significant pathogenic mutations, including 91 that were undetectable by standard clinical microarrays previously. These results indicate the potential of this method to replace existing diagnostic procedures, offering quicker, more accurate detection of rare genetic diseases, and potentially leading to significant savings for healthcare systems. However, the implementation of this approach may require additional training for specialists to efficiently generate and analyze the data, according to the researchers.

“We are still learning how large-scale genetic variations impact human health. This study proves that with the right computational methods, a single test can accurately detect them,” said Professor Matthew Hurles, Director of the Wellcome Sanger Institute and senior author of the study.

Related Links:
Wellcome Sanger Institute

Gold Member
Turnkey Packaging Solution
HLX
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.