Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple PCR Assay Accurately Differentiates Between Small Cell Lung Cancer Subtypes

By LabMedica International staff writers
Posted on 08 Apr 2024

Small cell lung cancer (SCLC), a rapidly progressing neuroendocrine malignancy, exhibits low survival rates. Despite its molecular and clinical heterogeneity, SCLC is presently treated as a single entity, without the use of predictive biomarkers, which leads to poor patient outcomes. Recent research has proposed dividing SCLC into four subtypes—labeled "A", "N", "P", and "I"—each characterized by distinct molecular signatures and treatment vulnerabilities. Initially, this classification relied on gene expression (RNA-seq) data. Further studies indicated that the same categorization could be recapitulated through the use of a reduced-representation bisulfite sequencing (RRBS) methylation profile. Although this classification system effectively predicts treatment responses, including to immunotherapy, in retrospective analyses, both RNAseq and RRBS techniques are too labor-intensive and slow for quick treatment decisions in an aggressive malignancy. Now, a pilot study published in the journal Cancer Cell has demonstrated the feasibility of a simple PCR assay to accurately differentiate between SCLC SCLC subtypes.

In the pilot study, Nucleix (San Diego, CA, USA) developed a methylation-based PCR assay to distinguish SCLC subtypes using its EpiCheck platform. This technology combines methylation-sensitive restriction endonuclease (MSRE) digestion with quantitative PCR (qPCR) amplification to identify differential methylation at the DNA level. Nucleix developed the 13-marker PCR assay based on a recent study that used DNA methylation to successfully detect SCLC in plasma samples from heavy smokers—with a sensitivity of 94% and specificity of 95%. The company developed novel biomarkers to classify SCLC into subtypes, aiming to reduce the time between diagnosis and tailored treatment interventions. The 13-marker PCR assay accurately classified 97% of the SCLC tissue samples within a blinded cohort in the pilot study.

“For decades, SCLC was considered a single, monolithic entity resulting in our current clinical protocols being based on disease stage, with no consideration of biomarkers that have predictive or prognostic significance, leading to expectedly poor outcomes,” said Mathias Ehrich, M.D., chief scientific officer. “These data show that we can potentially reduce the time between patient diagnosis and initiation of tailored treatment or inclusion in clinical studies from a month, in best-case scenarios, to just a few days, by using our PCR EpiCheck-based assay for the classification of SCLC subtypes.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.