We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis

By LabMedica International staff writers
Posted on 22 Apr 2024
Print article
Image: The new sequencing assay will aid in screening for HPV-associated throat cancer (Photo courtesy of 123RF)
Image: The new sequencing assay will aid in screening for HPV-associated throat cancer (Photo courtesy of 123RF)

Human papilloma virus (HPV) is known to cause various cancers, including those of the genitals, anus, mouth, throat, and cervix. HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated cancer in the United States but currently lacks an effective screening method. It is thought that HPV+OPSCC may begin to develop 10-15 years before it is clinically diagnosed, indicating a window for early detection. Circulating tumor HPV DNA (ctHPVDNA) has emerged as a highly sensitive and specific biomarker for HPV+OPSCC. Taken together, blood-based screening for HPV+OPSCC could enable detection years before the disease is diagnosed.

Investigators from Harvard Medical School (Boston, MA, USA) and partner institutions have developed HPV-DeepSeek, an HPV whole genome sequencing assay with 99% sensitivity and specificity at clinical diagnosis. For their study, they analyzed 28 plasma samples from patients with HPV+OPSCC, collected between 1.3 and 10.8 years prior to their diagnosis, alongside an equal number of age and gender-matched controls. The HPV-DeepSeek and an HPV serology assay identified 22 out of 28 patient samples (79%) as positive for HPV+OPSCC, achieving 100% detection within four years of diagnosis and a maximum lead time of 7.8 years. Furthermore, a machine learning model successfully classified 27 of the 28 cases (96%), with 100% detection within 10 years.

The team used plasma-based PIK3CA gene mutations, viral genome integration events, and HPV serology to orthogonally validate cancer detection with 68% (19/28) of the cohort with multiple cancer signals being detected. Molecular fingerprinting of the HPV genomes confirmed the uniqueness of each viral genome within the cohort, effectively ruling out the possibility of contamination. In cases where tumor blocks from the diagnosis were available (15/28), molecular fingerprinting performed within patients confirmed the same viral genome across time. This groundbreaking study showcases the potential of ctDNA-based screening to detect HPV-associated cancers up to a decade before clinical diagnosis becomes possible, paving the way for potentially transformative advancements in cancer screening.

Related Links:
Harvard Medical School

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.