We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Technique Detects Biomarkers for Kidney Diseases with Nephritic Syndrome

By LabMedica International staff writers
Posted on 27 May 2024
Print article
Image: Researchers have detected novel biomarkers for kidney diseases using a new technique (Photo courtesy of 123RF)
Image: Researchers have detected novel biomarkers for kidney diseases using a new technique (Photo courtesy of 123RF)

Nephrotic syndrome is associated with several kidney diseases such as minimal change disease (MCD), primary focal segmental glomerulosclerosis (FSGS), and membranous nephropathy (MN), and is characterized by high levels of protein in the urine. This condition primarily stems from damage to podocytes, the cells that filter blood in the kidneys, which results in protein leakage into the urine. Often, children diagnosed with MCD or FSGS are categorized under idiopathic nephrotic syndrome (INS), indicating an unknown cause. This is typically because children with elevated urinary protein levels seldom undergo kidney biopsies, which are the standard method for determining the underlying cause. Traditionally, the diagnosis of these conditions has been complicated due to their similar histological features and a general reluctance to perform invasive kidney biopsies, especially in children. Although anti-nephrin autoantibodies have been detected in some patients with MCD and FSGS, their exact role in the progression of these diseases remains unclear. A groundbreaking study recently presented at the 61st ERA Congress has made a significant breakthrough in diagnosing and monitoring kidney diseases linked to nephrotic syndrome.

Researchers at the University Medical Center Hamburg-Eppendorf (Hamburg, Germany) utilized a hybrid method to identify anti-nephrin autoantibodies as a reliable biomarker for tracking the progression of these diseases, paving the way for tailored treatment strategies. The study, which spanned across Europe and the USA, employed a novel combination of immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) to accurately detect anti-nephrin autoantibodies. The results showed that these autoantibodies were present in 69% of adults with MCD and 90% of children with INS who had not received immunosuppressive treatments. The levels of these antibodies also correlated with the activity of the disease, indicating their potential as a biomarker for monitoring disease progression. These antibodies were seldom found in other diseases being studied.

In further experiments, researchers introduced laboratory-synthesized nephrin protein to mice, simulating conditions similar to MCD. This immunization led to phosphorylation of nephrin and significant changes in cellular structures, suggesting that antibodies targeting nephrin play a role in podocyte dysfunction and the onset of nephrotic syndrome. Remarkably, this model required only a single immunization to trigger rapid disease onset, even with low concentrations of antibodies, unlike other models that need multiple immunizations.

“The identification of anti-nephrin autoantibodies as a reliable biomarker, coupled with our hybrid immunoprecipitation technique, enhances our diagnostic capabilities and opens new avenues for closely monitoring disease progression in kidney disorders with nephrotic syndrome,” said Dr. Nicola M. Tomas, co-lead author of the study.

“By providing insights into underlying mechanisms, these findings lay the groundwork for personalized interventions and pave the way for a new era of precision medicine for these complex conditions," added Professor Tobias B. Huber, lead author of the study.

Related Links:
University Medical Center Hamburg-Eppendorf

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.