We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

A. Menarini Diagnostics S.r.l.

A. Menarini Diagnostics S.r.l. is fully committed to developing high tech diagnostics instruments and reagents to imp... read more Featured Products: More products

Download Mobile App




Non-Invasive Prenatal Technology Accurately Detects Fetal Genomic Abnormalities from Maternal Blood Draw

By LabMedica International staff writers
Posted on 05 Jul 2024
Print article
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)

A new study has demonstrated the effectiveness of an automated system in delivering fetal genomic profiles that closely match those obtained through genomic analysis using traditional invasive procedures.

In a comprehensive clinical validation study, Menarini Silicon Biosystems (Bologna, Italy) has shown that its fetal cell-based noninvasive prenatal screening (NIPT) technology could accurately identify fetal genome-wide pathogenic copy number variants larger than 400Kb and commonly screened trisomy conditions. The findings were part of a large multicenter study highlighting its next-generation NIPT that isolates fetal cells from maternal blood. The genomic assessment of these cells was highly consistent with results from invasive diagnostic procedures. Additionally, the test being developed by Menarini has shown promise in identifying genomic conditions that are difficult to detect with the current non-invasive screening technologies, which rely on cell-free DNA (cfDNA) analysis.

The study involved over 1,000 women and focused on extracting individual fetal (trophoblast) cells from maternal blood for analysis. It aimed to detect common trisomic conditions and genome-wide microdeletions and microduplications, known as pathogenic copy number variants (pCNVs), which are significant contributors to perinatal morbidity and mortality. The results indicated that Menarini’s fetal cell-based NIPT could provide insights beyond the basic trisomies detected by standard cfDNA analysis and could accurately identify genome-wide microdeletions and microduplications down to at least 400Kb. The performance of this cell-based test was benchmarked against chromosomal microarray analysis (CMA) and karyotype from chorionic villus sampling (CVS) or amniocentesis, which are the clinical gold-standard methods for detecting prenatal chromosomal abnormalities.

"Isolating intact fetal cells from maternal blood for prenatal screening has long been perceived as an extremely challenging goal,” said Thomas Musci, MD, Chief Medical Officer, Head of Menarini Silicon Biosystems' Reproductive Precision Medicine Business Unit. “Our highly automated system for the isolation and single–cell analysis of circulating extravillous trophoblasts (cEVTs) supports the feasibility of a cell–based NIPT for fetal genomic profiling that can lead to more informed decision-making at all levels."

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Leptin ELISA
Leptin AccuBind ELISA Kit
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.