We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

A. Menarini Diagnostics S.r.l.

A. Menarini Diagnostics S.r.l. is fully committed to developing high tech diagnostics instruments and reagents to imp... read more Featured Products: More products

Download Mobile App




Non-Invasive Prenatal Technology Accurately Detects Fetal Genomic Abnormalities from Maternal Blood Draw

By LabMedica International staff writers
Posted on 05 Jul 2024
Print article
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)

A new study has demonstrated the effectiveness of an automated system in delivering fetal genomic profiles that closely match those obtained through genomic analysis using traditional invasive procedures.

In a comprehensive clinical validation study, Menarini Silicon Biosystems (Bologna, Italy) has shown that its fetal cell-based noninvasive prenatal screening (NIPT) technology could accurately identify fetal genome-wide pathogenic copy number variants larger than 400Kb and commonly screened trisomy conditions. The findings were part of a large multicenter study highlighting its next-generation NIPT that isolates fetal cells from maternal blood. The genomic assessment of these cells was highly consistent with results from invasive diagnostic procedures. Additionally, the test being developed by Menarini has shown promise in identifying genomic conditions that are difficult to detect with the current non-invasive screening technologies, which rely on cell-free DNA (cfDNA) analysis.

The study involved over 1,000 women and focused on extracting individual fetal (trophoblast) cells from maternal blood for analysis. It aimed to detect common trisomic conditions and genome-wide microdeletions and microduplications, known as pathogenic copy number variants (pCNVs), which are significant contributors to perinatal morbidity and mortality. The results indicated that Menarini’s fetal cell-based NIPT could provide insights beyond the basic trisomies detected by standard cfDNA analysis and could accurately identify genome-wide microdeletions and microduplications down to at least 400Kb. The performance of this cell-based test was benchmarked against chromosomal microarray analysis (CMA) and karyotype from chorionic villus sampling (CVS) or amniocentesis, which are the clinical gold-standard methods for detecting prenatal chromosomal abnormalities.

"Isolating intact fetal cells from maternal blood for prenatal screening has long been perceived as an extremely challenging goal,” said Thomas Musci, MD, Chief Medical Officer, Head of Menarini Silicon Biosystems' Reproductive Precision Medicine Business Unit. “Our highly automated system for the isolation and single–cell analysis of circulating extravillous trophoblasts (cEVTs) supports the feasibility of a cell–based NIPT for fetal genomic profiling that can lead to more informed decision-making at all levels."

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.