We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metagenomic Next-Generation Sequencing Identifies Pathogens Causing CNS Infections

By LabMedica International staff writers
Posted on 12 Jul 2024
Print article
Image: Clinical laboratory workflow for mNGS (Photo courtesy of UCSF)
Image: Clinical laboratory workflow for mNGS (Photo courtesy of UCSF)

Metagenomic next-generation sequencing (mNGS) is a shotgun sequencing method where all the nucleic acid (DNA and RNA) in a clinical sample is sequenced at a very high depth, 10-20 million sequences per sample. This technique is applicable to various clinical samples, including cerebrospinal fluid, plasma, respiratory secretions, urine, stool, or tissue. A single mNGS test can detect sequences from all pathogens—viruses, bacteria, fungi, and parasites—thereby aiding in identifying the potential cause of a patient’s infection. Now, data from a new study underscores the effectiveness and diagnostic capabilities of mNGS in diagnosing infectious diseases such as meningitis, encephalitis, and myelitis in both adults and children.

mNGS technology, originally developed at the University of California, San Francisco (UCSF, San Francisco, CA, USA) and exclusively licensed to Delve Bio (Boston, MA, USA), has been hailed as the future of infectious disease diagnostics, enabling physicians to avoid frustrating cycles of testing for patients battling serious neurological infections. The study analyzed over 4,800 patients who underwent cerebrospinal fluid (CSF) mNGS testing from 2016 to 2023. The results revealed that mNGS identified 797 organisms from 697 out of 4,828 samples (14.4%), encompassing 440 unique pathogenic species. The detection covered DNA and RNA viruses in nearly three-quarters of the cases, along with a wide range of bacteria, fungi, and parasites.

Further analysis and clinical review of more than 1,000 patients treated at UCSF indicated that 21.8% (48 out of 220) of infections were exclusively detected by mNGS. The sensitivity and specificity of CSF mNGS testing in clinically diagnosed infections were 63.1% and 99.6%, respectively, with a positive predictive value (PPV) of 97.1%, and a negative predictive value (NPV) of 92.3%. Comparatively, CSF mNGS demonstrated a higher diagnostic yield (63.1%) than all other forms of direct detection testing from CSF (45.9%), direct detection from non-CSF samples (15.0%), and indirect serologic testing (28.8%).

“Our experience over the seven years at UCSF covered in these studies shows that mNGS delivers the single most conclusive, unbiased and actionable tool for the diagnosis of infectious diseases,” said Charles Chiu, M.D., Ph.D., Delve Bio co-founder and UCSF Professor of Laboratory Medicine and Infectious Diseases and Director of the Clinical Microbiology Laboratory. “These data offer a compelling look at our real-world experience of using mNGS to uncover the cause of difficult-to-diagnose central nervous system infections to guide timely management and treatment for these life-threatening conditions.”

Related Links:
Delve Bio
UCSF

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.