We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metagenomic Next-Generation Sequencing Identifies Pathogens Causing CNS Infections

By LabMedica International staff writers
Posted on 12 Jul 2024
Print article
Image: Clinical laboratory workflow for mNGS (Photo courtesy of UCSF)
Image: Clinical laboratory workflow for mNGS (Photo courtesy of UCSF)

Metagenomic next-generation sequencing (mNGS) is a shotgun sequencing method where all the nucleic acid (DNA and RNA) in a clinical sample is sequenced at a very high depth, 10-20 million sequences per sample. This technique is applicable to various clinical samples, including cerebrospinal fluid, plasma, respiratory secretions, urine, stool, or tissue. A single mNGS test can detect sequences from all pathogens—viruses, bacteria, fungi, and parasites—thereby aiding in identifying the potential cause of a patient’s infection. Now, data from a new study underscores the effectiveness and diagnostic capabilities of mNGS in diagnosing infectious diseases such as meningitis, encephalitis, and myelitis in both adults and children.

mNGS technology, originally developed at the University of California, San Francisco (UCSF, San Francisco, CA, USA) and exclusively licensed to Delve Bio (Boston, MA, USA), has been hailed as the future of infectious disease diagnostics, enabling physicians to avoid frustrating cycles of testing for patients battling serious neurological infections. The study analyzed over 4,800 patients who underwent cerebrospinal fluid (CSF) mNGS testing from 2016 to 2023. The results revealed that mNGS identified 797 organisms from 697 out of 4,828 samples (14.4%), encompassing 440 unique pathogenic species. The detection covered DNA and RNA viruses in nearly three-quarters of the cases, along with a wide range of bacteria, fungi, and parasites.

Further analysis and clinical review of more than 1,000 patients treated at UCSF indicated that 21.8% (48 out of 220) of infections were exclusively detected by mNGS. The sensitivity and specificity of CSF mNGS testing in clinically diagnosed infections were 63.1% and 99.6%, respectively, with a positive predictive value (PPV) of 97.1%, and a negative predictive value (NPV) of 92.3%. Comparatively, CSF mNGS demonstrated a higher diagnostic yield (63.1%) than all other forms of direct detection testing from CSF (45.9%), direct detection from non-CSF samples (15.0%), and indirect serologic testing (28.8%).

“Our experience over the seven years at UCSF covered in these studies shows that mNGS delivers the single most conclusive, unbiased and actionable tool for the diagnosis of infectious diseases,” said Charles Chiu, M.D., Ph.D., Delve Bio co-founder and UCSF Professor of Laboratory Medicine and Infectious Diseases and Director of the Clinical Microbiology Laboratory. “These data offer a compelling look at our real-world experience of using mNGS to uncover the cause of difficult-to-diagnose central nervous system infections to guide timely management and treatment for these life-threatening conditions.”

Related Links:
Delve Bio
UCSF

Gold Member
Turnkey Packaging Solution
HLX
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Coccidioidomycosis Test
Premier Coccidioides Antibody Test
New
C. difficile Positive Control
C. difficile Ag Positive Control for Rapid Test

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.