We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Machine Learning-Powered Blood Test Estimates Age-Related Disease Risk

By LabMedica International staff writers
Posted on 23 Aug 2024
Print article
Image: The experimental blood test estimates age-related disease risk in diverse populations (Photo courtesy of 123RF)
Image: The experimental blood test estimates age-related disease risk in diverse populations (Photo courtesy of 123RF)

Age is a significant factor for many common chronic diseases, yet it does not perfectly represent the actual biological aging processes that drive multimorbidity and mortality. Biological aging can be more accurately assessed by using 'omics data, which reflects an individual's biological functions relative to their chronological age. Traditionally, biological aging clocks have relied on DNA methylation, but protein levels might offer deeper insights into the mechanisms of aging. Researchers have now created a machine learning-based blood test that evaluates over 200 proteins to determine a person’s biological aging rate. This test is designed to predict the risk of developing 18 major age-related diseases and the likelihood of premature death.

The machine learning model that uses blood proteomic information to estimate a proteomic age clock was developed by researchers at Massachusetts General Hospital (Boston, MA, USA) in a large sample of participants from the UK Biobank. Its validity was further confirmed through tests with 3,977 participants from the China Kadoorie Biobank and 1,990 from FinnGen in Finland, covering a broad age range and various health backgrounds. This test identified 204 proteins that precisely predict chronological age, including 20 key proteins linked to aging, capturing 91% of the predictive accuracy of the larger model.

The proteomic age clock demonstrated consistent accuracy across different populations from China and Finland, matching its performance in the UK Biobank. The study, published in Nature Medicine, showed that faster proteomic aging correlates with higher risks of chronic diseases such as heart, liver, and lung diseases, diabetes, Alzheimer’s, and cancer. It also relates to overall risk of multimorbidity and mortality. Moreover, proteomic aging corresponds with biological, physical, and cognitive functions, including telomere length, frailty, and cognitive performance.

This research confirms the potential of using the proteome as a reliable indicator of biological age and functioning. It enhances understanding of the biological pathways involved in aging and disease, aids in the development of treatments, and evaluates their efficacy. Although currently used only in research settings, efforts are underway to make this test available for clinical use, enabling it to be ordered in a doctor’s office.

“Multimorbidity is an important problem in clinical and population health that has a major impact on the cost of health care. Our proteomic clock gives us a first insight into the pathways that form the biological basis for multimorbidity,” said Austin Argentieri, HMS research fellow in medicine in the Analytic and Translational Genetics Unit at Massachusetts General Hospital, who is lead author of the study. “In the near future, proteomic age clocks can be used to study the relationship between genetics and environment in aging, yielding novel insights into the drivers of aging and multimorbidity across the life span. An important avenue will also be to use proteomic clocks as a biomarker for the effectiveness of preventive interventions targeting aging and multimorbidity.”

Related Links:
Massachusetts General Hospital

New
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Human Papillomavirus Test
RealLine HPV HCR Screen Kit
New
Silver Member
Cytomegalovirus Test
ReQuest CMV IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.