We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breakthrough Technology Represents Leap Forward in Next-Generation Sequencing

By LabMedica International staff writers
Posted on 21 Feb 2025
Print article
Image: SBX technology is designed to make DNA sequencing quicker, more accurate, and highly flexible (Photo courtesy of Roche)
Image: SBX technology is designed to make DNA sequencing quicker, more accurate, and highly flexible (Photo courtesy of Roche)

Next-generation sequencing (NGS) has revolutionized our understanding of genetics, genomics, and cell biology, offering detailed insights that are essential for decoding complex diseases such as cancer, immune disorders, and neurodegenerative conditions, where the progression of the disease is influenced by hundreds or even thousands of genes. Now, a groundbreaking advancement in NGS technology is poised to take this understanding even further.

Roche (Basel, Switzerland) has introduced its proprietary sequencing by expansion (SBX) technology, marking a new era in NGS. SBX combines advanced chemistry with an innovative sensor module to deliver ultra-rapid, high-throughput sequencing that is both flexible and scalable, catering to a wide range of applications. This novel sequencing technique employs a sophisticated biochemical process to encode the sequence of a target nucleic acid molecule (either DNA or RNA) into a surrogate polymer known as an Xpandomer. These Xpandomers are significantly longer than the original molecule—fifty times longer—and encode the sequence information into high signal-to-noise reporters, providing clear signals with minimal background interference. This results in highly accurate single-molecule nanopore sequencing, utilizing a CMOS-based sensor module with parallel processing capabilities, offering unprecedented speed and flexibility compared to traditional sequencing technologies. Roche’s innovative NGS platform is designed to overcome the limitations of conventional methods, offering a combination of high accuracy, flexibility, and speed that makes it suitable for a broad array of genomic applications.

A major advantage of the SBX technology is its scalability. The chemistry integrates with an advanced CMOS sensor module that allows for ultra-rapid, real-time base calling and analysis. This system can process multiple samples simultaneously, creating a flexible, high-throughput architecture that enables cost-efficient sequencing for various project sizes, from small studies to large-scale projects involving thousands of samples. This scalability and versatility make SBX technology ideal for applications such as whole genome sequencing, whole exome sequencing, and RNA sequencing. Its potential extends beyond research labs, with promising applications in clinical settings where detailed genomic insights are crucial. SBX technology offers researchers the ability to meet evolving research demands efficiently, driving significant progress in our understanding of genetics and disease. This, in turn, holds the potential to improve healthcare outcomes and drive the adoption of more advanced sequencing technologies in clinical labs, further advancing the field of genomics.

“The science behind SBX technology represents a significant breakthrough that addresses the limitations of existing sequencing solutions,” states Matt Sause, CEO of Roche Diagnostics. “By integrating and enhancing the two technologies, Roche's SBX has created a differentiated approach, offering unparalleled speed, efficiency and flexibility. The speed and accuracy of SBX has the potential to revolutionize the use of sequencing in research and healthcare.”

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.