We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Biology Lab Tools Speed Up Tumor Dissection

By LabMedica International staff writers
Posted on 12 Sep 2024
Print article
Image: Scanning microscopy images of the microDicer and microGrate (Photo courtesy of Seth Cordts and Saisneha Koppaka)
Image: Scanning microscopy images of the microDicer and microGrate (Photo courtesy of Seth Cordts and Saisneha Koppaka)

As intriguing as working in a modern biology lab can be, much of the time, it involves repetitive, detailed tasks that need to be completed before the actual research begins. For instance, cancer researchers today can test multiple cancer therapies, including immunotherapies, on hundreds or even thousands of small, lab-grown tumor samples called organoids. However, creating organoids often requires researchers to manually mince a fresh tumor into tiny pieces using scissors, cutting the specimen into submillimeter sizes. This tedious and time-consuming task is usually carried out by highly skilled – and often overqualified – graduate students or research scientists. Fortunately, those days may be coming to an end as researchers have developed two innovative tools to streamline the precision cutting of tumor samples into submillimeter-scale organoids.

Much like kitchen gadgets used to dice vegetables or grate cheese, the microDicer (µDicer) and microGrater (µGrater), developed by scientists at the Stanford School of Engineering (Stanford, CA, USA), promise to improve both the consistency and quality of samples. This is crucial, as it directly influences the accuracy of downstream experiments, such as drug response testing. In cancer immunotherapy research, preserving the spatial relationships between tumor cells and infiltrating immune cells is key to accurately testing therapies. These new tools allow researchers to more efficiently create organoids that retain these vital cellular relationships. As detailed in the journal Microsystems & Nanoengineering, which features the study on the microDicer and microGrater, the microDicer’s blades are made using micromachining techniques from the semiconductor industry. The silicon blades are etched into a reactive plasma, forming a honeycomb-like mesh with sharp edges. Researchers use the microDicer by shaving thin tissue layers and pressing them through this honeycomb mesh, creating precise, uniform tumor samples.

In contrast, the microGrater features an array of blades shaped like rounded rectangles, each slightly longer than half a millimeter. The beveled edges of these rectangles act as blades, shaving off precise organoids as the tissue is moved across the grater. The tumors being studied are grown in lab mice, serving as a reliable model for human tumors. Ultimately, the aim is to develop personalized cancer therapies by collecting samples from individual patients and testing which immunotherapies will be most effective for them. These new tools standardize the organoid preparation process in ways manual cutting cannot, potentially speeding up regulatory approvals, such as from the FDA, for broader clinical applications.

“These new tools will speed up the manual lab work, but their utility goes beyond that obvious advantage,” said Sindy Tang, an associate professor of mechanical engineering and senior author of the study. “These tools produce uniform-sized organoids and the blades can be varied to whatever size the researcher requires.”

Related Links:
Stanford University
Stanford Medicine

New
Gold Member
RPR and TPLA Assays
SEKURE RPR and TPLA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Whole Blood-Based Controls
Lyphochek Hemoglobin A1C Linearity Set
New
IGFBP-1 Rapid Test
AMNISTRIP

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.