We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

By LabMedica International staff writers
Posted on 19 Nov 2024
Print article
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women with dense breast tissue. Photoacoustic imaging, which uses a combination of light and sound to produce detailed images of breast tissue, presents a potential solution. However, recent research has identified a major issue: skin tone bias.

Researchers from Johns Hopkins University (Baltimore, MD, USA) conducted a study to assess how skin tone affects the visibility of breast cancer targets in photoacoustic imaging. Published in Biophotonics Discovery, the research evaluated three image reconstruction methods: fast Fourier transform (FFT)-based reconstruction, delay-and-sum (DAS) beamforming, and short-lag spatial coherence (SLSC) beamforming. The study involved simulations with various wavelengths (757, 800, and 1064 nm), target sizes (ranging from 0.5 to 3 mm), and skin tones (from very light to dark).

The findings revealed that traditional methods like FFT and DAS struggled to visualize small targets in darker skin tones, particularly at 757 and 800 nm wavelengths. Targets smaller than 3 mm were especially difficult to detect, with lower signal-to-noise ratios (SNR) and contrast-to-noise ratios (gCNR). In contrast, the 1064 nm wavelength showed notable improvements, particularly when paired with SLSC beamforming, enhancing the visibility of targets across all skin tones and providing clearer images with higher SNR and gCNR values.

The study findings offer promising implications for the future of breast cancer detection. By addressing the skin tone bias, photoacoustic imaging could become a more accurate and equitable tool for early diagnosis, benefiting women of all skin tones. The study highlights the importance of considering skin tone when designing next-generation imaging systems, ensuring more inclusive healthcare solutions.

“This work was motivated by a previously poor understanding of photoacoustic imaging performance under combined variations of small target sizes and darker skin tones,” said senior and corresponding author Muyinatu Bell. “Our results are enlightening, as we now have a better understanding of advanced photoacoustic imaging techniques and associated wavelengths necessary to detect small targets.”

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.