We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




“Virtual Slides” Reveal Disease Tissue in 3D

By LabMedica International staff writers
Posted on 07 May 2012
Print article
Image: Studying tissue samples in “virtual” 3D -- Please see Related Links below for additional images (Photo courtesy of the University of Leeds).
Image: Studying tissue samples in “virtual” 3D -- Please see Related Links below for additional images (Photo courtesy of the University of Leeds).
A fast, user-friendly system has been developed for examining tissue samples in “virtual” 3D images. The novel digital scanning 3D reconstruction system produces high-resolution, multicolored images that can be rotated and examined from any angle.

Computing experts and medical researchers at the University of Leeds (Leeds, UK) have combined efforts to developed this technology as a particularly useful tool for histopathology researchers and potentially also for clinical practice, as medical imaging technology provides even higher resolution images of tissue.

Viewing tissue in 3D enables more in-depth understanding of tissue shape characteristics in ways not possible with conventional methods. Currently, hospital pathologists and medical researchers cut tissue samples into ultra-thin slices and routinely examine these by hand, one-by-one, on a microscope. This is a labor-intensive process - a single slide can contain several hundred thousand cells. To perform a 3D-like analysis, users would need to look at hundreds of different 2D sections - something that would be prohibitively expensive and time-consuming.

In contrast, the system developed at the University of Leeds requires almost no extra manual input once the tissue has been cut and mounted onto glass slides. An automated system turns batches of the slides into high-resolution digital images, which are then aligned using image registration software. Users, without input from computing specialists, can then study these virtual blocks of tissue in 3D and zoom in on particular areas of interest.

The researchers have now tested the system on eight different types of tissue, using more than 13,000 virtual slides to create around 400 separate 3D volumes. The system and selected case studies, including examples of liver disease, cancer, and embryology, are described in the May 2012 issue of the American Journal of Pathology.

This new approach to digital 3D reconstruction reveals more detailed information about disease processes - information that could be used to develop new therapies or explain why conventional treatments are not working. "Having a 3D view can often make a real difference," said Dr. Derek Magee, from the University of Leeds School of Computing, where the system’s software was developed. "For instance, if you want to understand how a system of blood vessels supplying a tumor connects up, you really need to see that in 3D, not as a series of separate 2D sections."

Related Links:

University of Leeds
Sample 3D images

New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Pharmacogenetics Panel
VeriDose DPYD Panel
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.