We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanoflares Detect Live Tumor Cells in Human Blood

By LabMedica International staff writers
Posted on 07 Dec 2014
Print article
Image: NanoFlares-specially designed stem cells that have been developed to detect blood-borne cancers. When the cells come in contact with cancerous cells, they emit light (Photo courtesy of the International Institute for Nanotechnology at Northwestern University).
Image: NanoFlares-specially designed stem cells that have been developed to detect blood-borne cancers. When the cells come in contact with cancerous cells, they emit light (Photo courtesy of the International Institute for Nanotechnology at Northwestern University).
Metastasis portends a poor prognosis for cancer patients and primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions.

The analysis of cancer cells in blood, the so-called circulating tumor cells (CTCs), may provide unprecedented opportunities for metastatic risk assessment and investigations using NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood.

Scientists at Northwestern University (Evanston, IL, USA) working with colleagues from various institutions, used NanoFlare technology designed to recognize a specific genetic code snippet associated with a cancer. The core nanoparticle, only 13 nanometers in diameter, enters cells, and the NanoFlare seeks its target. The genetic targets were messenger RNA (mRNA) that code for certain proteins known to be biomarkers for aggressive breast cancer cells.

The team first used the blood of healthy individuals, spiking some of the blood with living breast cancer cells to see if the NanoFlares could detect them and they used unspiked blood as a control. They tested four different NanoFlares, each with a different genetic target relevant to breast cancer metastasis. Samples were analyzed by flow cytometry using the LSRFortessa Analyzer (BD Biosciences; San Jose, CA, USA). The technology successfully detected the cancer cells with less than 1% incidence of false-negative results.

Chad A. Mirkin, PhD, the director of the Institute of Nanotechnology and senior author of the study said, “This technology has the potential to profoundly change the way breast cancer in particular and cancers in general are both studied and treated. Cancers are very genetically diverse, and it's important to know what cancer subtype a patient has. Now you can think about collecting a patient's cells and studying how those cells respond to different therapies. The way a patient responds to treatment depends on the genetic makeup of the cancer.” The study was published on November 17, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

Northwestern University
BD Biosciences 


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.