We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanotechnology Accurately Predicts Prostate Cancer and Prognosis

By LabMedica International staff writers
Posted on 31 Mar 2015
Print article
Image: Partial wave spectroscopy (PWS) is able to detect subtle changes in cells that indicate cancer growth in a different area of the body, even when those same cells appear normal under a microscope (Photo courtesy of North Western University).
Image: Partial wave spectroscopy (PWS) is able to detect subtle changes in cells that indicate cancer growth in a different area of the body, even when those same cells appear normal under a microscope (Photo courtesy of North Western University).
The emerging field of nanocytology, using partial wave spectroscopic microscopy, could help men make better decisions about whether or not to undergo aggressive prostate cancer treatments.

The prostate-specific antigen (PSA) test was once the recommended screening tool for detecting prostate cancer (PCa), but there is now disagreement over the use of this test because it cannot predict which men with elevated PSA levels will actually develop an aggressive form of the disease.

Scientists at the Northwestern University (Evanston, IL, USA) and their colleagues at the Boston University Medical Center (Boston, MA, USA) studied patients who underwent their first surveillance biopsy 6 to12 months after enrollment. Progression was defined as any change in criteria 3, 4, or 5. Thirty-eight patients were randomly chosen from the database of patients adjudicated as progressors and non-progressors by the chief study urologist. Transrectal biopsies were obtained under three-dimensional ultrasound guidance. Hematoxylin and eosin (H&E) sections were reviewed by the study pathologist to direct the partial wave spectroscopic microscopy (PWS) analysis towards non-malignant tissue.

The teams described PWS marker disorder strength (Ld) as proportional to the mean and standard deviation of the spatial variations of the macromolecular density of the fundamental cellular building blocks (proteins, nucleic acids, lipids). Thus, Ld, colloquially, can be described as measuring the “clumpiness” of nanoscale structure. The scientists demonstrated that PWS is sensitive to structures from 20 to 200 nm through the spectral analysis of the interference spectra of light reflected from intracellular refractive index variations within microscopic spatiotemporal coherence volume, as opposed to typical light microscopy whose resolution is restricted 200 to 500 nm, the diffraction limit of light.

There was a profound increase in nano-architectural disorder between progressors and non-progressors. The Ld from future progressors was dramatically increased when compared to future non-progressors: 1 ± 0.065 versus 1.30 ± 0.0614, respectively. The area under the receiver operator characteristic curve (AUC) was 0.79, yielding a sensitivity of 88% and specificity of 72% for discriminating between progressors and non-progressors. This was not confounded by demographic factors such as age, smoking status, race, obesity, thus supporting the robustness of the approach.

The authors concluded that nano-architectural alterations occur in prostate cancer field carcinogenesis and can be exploited to predict prognosis of early stage PCa. This approach has promise in addressing the clinically vexing dilemma of management of low grade Gleason score 6 PCa and may provide a paradigm for dealing with the larger issue of cancer overdiagnosis. The study was published on February 23, 2015, in the journal Public Library of Science ONE.

Related Links:

Northwestern University 
Boston University Medical Center 


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.