We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technique Paints Tissue Samples with Light

By LabMedica International staff writers
Posted on 15 Apr 2015
Print article
Image: Breast tissue computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson\'s trichrome (blue, red at right) (Photo courtesy of Prof. Rohit Bhargava).
Image: Breast tissue computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson\'s trichrome (blue, red at right) (Photo courtesy of Prof. Rohit Bhargava).
One infrared scan can give pathologists a window into the structures and molecules inside tissues and cells, enabling fast and broad diagnostic assessments, due to a newly developed imaging technique.

Doctors and scientist use stains or dyes that stick to the particular structure or molecule they are looking for when studying tissue samples. Staining can be a long and exacting process, and the added chemicals can damage cells. Histologists also have to choose which things to test for, because it is not always possible to obtain multiple samples for multiple stains from one biopsy. Dyes such as hematoxylin and eosin (H&E) and immunohistochemical stains have been increasingly used to visualize tissue composition in clinical practice.

Scientists at the University of Illinois Cancer Center (Urbana, IL, USA) and their colleagues have developed a technique using a combination of advanced microscope imaging and computer analysis. The new, advanced infrared imaging technique uses no chemical stains, instead scanning the sample with infrared light to directly measure the chemical composition of the cells. The computer then translates spectral information from the microscope into chemical stain patterns, without the bother of applying dyes to the cells.

The Fourier transform infrared (FT-IR) spectroscopic imaging and computation and stainless computed histopathology can enable a rapid, digital, quantitative and non-perturbing visualization of morphology and multiple molecular epitopes simultaneously in a variety of clinical pathology applications. The investigators reproduced a wide array of molecular stains by computationally isolating the spectra of specific molecules. This allows the user to simply tune to a required stain, for as many different stains as are necessary, all without damaging the original tissue sample, which can then be used for other tests.

David Mayerich, PhD, the lead author of the study, said, “We are relying on the chemistry to generate the ground truth and act as the 'supervisor' for a supervised learning algorithm. One of the bottlenecks in automated pathology is the extensive processing that must be applied to stained images to correct for staining artifacts and inconsistencies. The ability to apply stains uniformly across multiple samples could make these initial image processing steps significantly easier and more robust.” The study was published on March 20, 2015, in the journal Technology.

Related Links:

University of Illinois Cancer Center 


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.