We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Biomarker Signals More Aggressive Prostate Cancer

By LabMedica International staff writers
Posted on 05 May 2015
Print article
Image: The FluoView 500 Laser Scanning Confocal Microscope (Photo courtesy of Olympus Inc.).
Image: The FluoView 500 Laser Scanning Confocal Microscope (Photo courtesy of Olympus Inc.).
Prostate cancer (PCa), the most common male malignancy, is frequently associated with bone metastases and a major challenge for treatment is to identify factors controlling tumor growth and metastasis.

The metastatic process begins in the primary tumor with activation of genes that promote angiogenesis, the development of new blood vessels, tumor invasion and migration leading to colonization of peripheral tissues including bone.

Scientists at the University of Michigan (Ann Arbor, MI, USA) and their Italian colleagues investigated whether adding a phosphate group, a process called phosphorylation, to the protein Runt-related transcription factor 2 (Runx2), changes its structure to activate specific genes in both bone and prostate cancer cells, but with vastly different results. Bone cells need Runx2 and the newly roused genes to make healthy bone. However, in prostate cancer cells, Runx2 triggered genes that fuel tumor growth and metastasis. They analyzed tissue samples from 129 patients with prostate cancer.

The team used various techniques in the study including Western blot analysis and immunofluorescence, transient transfections, luciferase reporter assays and virus transduction, cell migration and cell invasion assays, and immunohistochemistry. Fluorescence was detected using an Olympus FluoView 500 Laser Scanning Confocal Microscope (Olympus Inc., Waltham, MA, USA). Tissue samples from a total of 129 Caucasian patients with prostate disease were used to construct tissue microarrays.

The investigators found little or no Runx2 phosphorylation in normal prostate, benign prostate or prostatitis, which suggests that Runx2 phosphorylation is closely associated with the more aggressive forms of prostate cancer. The next step is to establish an actual cause-effect relationship between Runx2 phosphorylation and prostate cancer. Renny T. Franceschi, PhD, the senior author of the study said, “If this biomarker does indeed control the growth of prostate cells, it's a new signal that's not been seen before and could provide a potential new drug target for prostate cancer. It could also be a potential biomarker to discriminate between fast and slow growing tumors.” The study was published on April 13, 2015, in the journal Oncogene.

Related Links:
University of Michigan
Olympus Inc.

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.