We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pathologists Use Spatial Light Interference Microscopy to Predict Risk of Prostate Cancer Recurrence Prior to Biopsy or Surgery

By LabMedica International staff writers
Posted on 24 May 2015
Print article
Image: Left: Quantitative phase image of an unstained prostatectomy sample from a patient who had a biochemical recurrence of prostate cancer. Right: A zoomed-in region from the quantitative phase image showing a cancerous gland with debris in the lumen. The stroma, or supportive tissue environment, shows discontinuities in the fiber length and disorganization in the orientation of the fibers (Photo courtesy of the University of Illinois).
Image: Left: Quantitative phase image of an unstained prostatectomy sample from a patient who had a biochemical recurrence of prostate cancer. Right: A zoomed-in region from the quantitative phase image showing a cancerous gland with debris in the lumen. The stroma, or supportive tissue environment, shows discontinuities in the fiber length and disorganization in the orientation of the fibers (Photo courtesy of the University of Illinois).
A novel microscopy method that combines phase contrast microscopy with holography enables prediction of the likelihood of prostate cancer recurrence prior to biopsy or surgery.

The method is called spatial light interference microscopy or SLIM. SLIM uses a commercial phase contrast microscope and white light illumination, resulting in nanometer scale sensitivity to optical path-length shifts. In essence, SLIM combines phase contrast microscopy with holography.

Investigators at the University of Illinois (Urbana, USA) have introduced a new instrument for SLIM imaging. Their real-time fast SLIM technique could image at a maximum rate of 50 frames per second and provided real-time quantitative phase images at 12.5 frames per second. They were able to achieve this fast rate by combining rapid LCPM (linear pulse-code modulation) and a fast sCMOS camera. In addition, they developed the software to perform phase reconstruction and display the quantitative phase images in real-time.

In the current study, the investigators used the SLIM technique to examine 181 tissue samples obtained from the [US] National Cancer Institute-sponsored Cooperative Prostate Tissue Resource (CPCTR), The specimens were taken from individuals who had a prostatectomy, approximately half who had no recurrence and half who did.

The instrument was programmed to scan microscope slides containing 320–360 individual cores. The resulting SLIM image contained rich information about tissue morphology, with the glandular epithelium and stroma structures clearly resolved. This allowed the investigators to interrogate scattering changes specific to prostate stroma.

Results suggested that SLIM showed promise in assisting pathologists to improve prediction of prostate cancer recurrence. The data revealed that a lower value of anisotropy corresponded to a higher risk for recurrence, meaning that the stroma adjoining the glands of recurrent patients was more fractionated than in non-recurrent patients. Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies identical properties in all directions. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.

"For every 20 surgery procedures to take out the prostate, it is estimated that only one life is saved," said senior author Dr. Gabriel Popescu, associate professor of electrical and computer engineering at the University of Illinois. "For the other 19 people, they would be better left alone, because with removing the prostate, the quality of life goes down dramatically. So if you had a tool that could tell which patient will actually be more likely to have a bad outcome, then you could more aggressively treat that case."

"What SLIM is very good at is to make invisible objects visible with nanoscale sensitivity," said Dr. Popescu. "So we pick these structural details without the need for staining, which can introduce new variables into the specimen. Our dream is for everyone to have SLIM capabilities in their labs. One can imagine that a SLIM-based tissue imager will scan biopsies in a clinic and, paired with software that is intelligent enough to look for these specific markers, will provide the pathologist with valuable new information. This additional information will translate into more accurate diagnosis and prognosis."

The paper describing the use of SLIM to predict prostate cancer recurrence was published in the May 15, 2015, online edition of the journal Scientific Reports.

Related Links:

University of Illinois


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.