We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Classification Improves Method to Diagnose Gliomas

By LabMedica International staff writers
Posted on 28 Jun 2015
Print article
Image: Histopathology of an oligodendroglioma showing the characteristic branching, small, chicken wire-like blood vessels and fried egg-like cells, with clear cytoplasm and well-defined cell borders (Photo courtesy of Nephron).
Image: Histopathology of an oligodendroglioma showing the characteristic branching, small, chicken wire-like blood vessels and fried egg-like cells, with clear cytoplasm and well-defined cell borders (Photo courtesy of Nephron).
The molecular makeup of brain tumors can be used to sort patients with gliomas into five categories, each with different clinical features and outcomes.

The molecular finding could change the methods that physicians rely on to determine prognosis and treatment options as previously they relied on how patients' tumors look under the microscope.

A large team of scientists led by those at the Mayo Clinic (Rochester, MN, USA) studied a total of 317 cases and 789 controls from the Mayo Clinic series, which were used as the discovery set in this study; also 351 cases and as many as 4,504 controls depending on the Single Nucleotide Polymorphism (SNP) being analyzed from the University of California, San Francisco (UCSF; CA, USA) Adult Glioma Study were used as the first replication set. The team explored whether three tumor markers could be used to define molecular groups that better inform glioma treatment.

The investigators scored tumors as negative or positive for 1p/19q codeletion, isocitrate dehydrogenase (IDH) mutation and telomerase reverse transcriptase (TERT) mutation in 317 gliomas from the Mayo Clinic Case-Control Study. The scientists then compared patient characteristics among the top five molecular groups (triple-positive, TERT- and IDH-mutated, IDH-mutated-only, TERT-mutated-only, and triple-negative) and found that the patients within each group had similar age of onset and overall survival.

The results of the study will enable clinicians to make better predictions about which specific treatment course is necessary for each individual patient. For example, the team found that the molecular classification can identify patients with histologically defined lower-grade tumors who have less favorable outcomes and deserve more aggressive therapy.

Robert B. Jenkins, MD, PhD, a professor and senior author of the study said, “These molecular groups could represent distinct types of gliomas, with different origins and paths to progression. Now that we know more about the germline alterations that predispose to these tumors and the ensemble of mutations that are associated with each type of glioma, we can start thinking about building models of the disease that can help us find new therapies to precisely target specific types of glioma.”

Daniel H. Lachance, MD, a neuro oncologist at Mayo Clinic, and lead author said, “Our findings are going to weigh heavily on the future classification of brain tumors. The time of classifying these tumors solely according to histology as astrocytoma, oligodendroglioma or mixed oligoastrocytoma could be a thing of the past. This molecular data helps us better classify glioma patients, so we can begin to understand who needs to be treated more aggressively and who might be able to avoid unnecessary therapies.” The study was published on June 10, 2015, in the New England Journal of Medicine (NEJM).

Related Links:

Mayo Clinic 
University of California, San Francisco 


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.